--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-depression results: [] --- # distilbert-base-uncased-finetuned-depression This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6721 - Precision: 0.9018 - Recall: 0.8881 - F1: 0.8946 - Accuracy: 0.9168 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 469 | 0.3914 | 0.9136 | 0.7542 | 0.8087 | 0.8678 | | 0.5449 | 2.0 | 938 | 0.3944 | 0.8652 | 0.8677 | 0.8644 | 0.8977 | | 0.2679 | 3.0 | 1407 | 0.4355 | 0.8717 | 0.8713 | 0.8703 | 0.9009 | | 0.1516 | 4.0 | 1876 | 0.4509 | 0.8757 | 0.8809 | 0.8779 | 0.9083 | | 0.0989 | 5.0 | 2345 | 0.4762 | 0.8861 | 0.8846 | 0.8854 | 0.9094 | | 0.0666 | 6.0 | 2814 | 0.4829 | 0.8878 | 0.8890 | 0.8883 | 0.9126 | | 0.0563 | 7.0 | 3283 | 0.5768 | 0.8918 | 0.8866 | 0.8885 | 0.9115 | | 0.0349 | 8.0 | 3752 | 0.6874 | 0.8898 | 0.8644 | 0.8758 | 0.8987 | | 0.0444 | 9.0 | 4221 | 0.6256 | 0.8804 | 0.8822 | 0.8790 | 0.9019 | | 0.0301 | 10.0 | 4690 | 0.6354 | 0.8897 | 0.8750 | 0.8814 | 0.9030 | | 0.0318 | 11.0 | 5159 | 0.7172 | 0.8894 | 0.8682 | 0.8770 | 0.9009 | | 0.0222 | 12.0 | 5628 | 0.6906 | 0.9001 | 0.8700 | 0.8834 | 0.9019 | | 0.0243 | 13.0 | 6097 | 0.7263 | 0.8898 | 0.8732 | 0.8800 | 0.9019 | | 0.0172 | 14.0 | 6566 | 0.6936 | 0.8945 | 0.8766 | 0.8846 | 0.9072 | | 0.0204 | 15.0 | 7035 | 0.7428 | 0.9081 | 0.8730 | 0.8889 | 0.9051 | | 0.0162 | 16.0 | 7504 | 0.7202 | 0.8966 | 0.8748 | 0.8846 | 0.9062 | | 0.0162 | 17.0 | 7973 | 0.6721 | 0.9018 | 0.8881 | 0.8946 | 0.9168 | | 0.0172 | 18.0 | 8442 | 0.7664 | 0.9037 | 0.8706 | 0.8854 | 0.9030 | | 0.0156 | 19.0 | 8911 | 0.7166 | 0.8985 | 0.8784 | 0.8876 | 0.9094 | | 0.0158 | 20.0 | 9380 | 0.7327 | 0.8966 | 0.8748 | 0.8846 | 0.9062 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1