File size: 2,856 Bytes
db5a1b2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |
---
library_name: transformers
license: bsd-3-clause
base_model: weathon/smiles_llava
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: smiles_llava_ft
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# smiles_llava_ft
This model is a fine-tuned version of [weathon/smiles_llava](https://huggingface.co/weathon/smiles_llava) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.0768
- Accuracy: 0.7191
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 20
- mixed_precision_training: Native AMP
- label_smoothing_factor: 0.1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-------:|:----:|:---------------:|:--------:|
| 3.3041 | 0.9569 | 100 | 3.5557 | 0.0 |
| 2.3241 | 1.9091 | 200 | 2.5052 | 0.1835 |
| 2.029 | 2.8612 | 300 | 2.2936 | 0.5056 |
| 1.9409 | 3.8134 | 400 | 2.2173 | 0.5693 |
| 1.9861 | 4.7656 | 500 | 2.1782 | 0.6030 |
| 1.9564 | 5.7177 | 600 | 2.1461 | 0.6217 |
| 1.9314 | 6.6699 | 700 | 2.1301 | 0.6704 |
| 1.8838 | 7.6220 | 800 | 2.1084 | 0.6854 |
| 1.9538 | 8.5742 | 900 | 2.1052 | 0.7154 |
| 1.8382 | 9.5263 | 1000 | 2.0955 | 0.7191 |
| 1.9399 | 10.4785 | 1100 | 2.1008 | 0.6554 |
| 1.8231 | 11.4306 | 1200 | 2.0939 | 0.6891 |
| 1.8172 | 12.3828 | 1300 | 2.0899 | 0.6929 |
| 1.8708 | 13.3349 | 1400 | 2.0800 | 0.7491 |
| 1.915 | 14.2871 | 1500 | 2.0776 | 0.7116 |
| 1.8387 | 15.2392 | 1600 | 2.0819 | 0.7041 |
| 1.8646 | 16.1914 | 1700 | 2.0771 | 0.7228 |
| 1.7943 | 17.1435 | 1800 | 2.0770 | 0.7041 |
| 1.8878 | 18.0957 | 1900 | 2.0768 | 0.7154 |
| 1.841 | 19.0478 | 2000 | 2.0768 | 0.7191 |
### Framework versions
- Transformers 4.48.2
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
|