--- library_name: transformers license: bsd-3-clause base_model: Salesforce/blip-image-captioning-base tags: - generated_from_trainer model-index: - name: smiles_llava results: [] --- # smiles_llava This model is a fine-tuned version of [Salesforce/blip-image-captioning-base](https://huggingface.co/Salesforce/blip-image-captioning-base) on an unknown dataset. It achieves the following results on the evaluation set: - eval_loss: 0.0104 - eval_accuracy: 0.9484 - eval_runtime: 8.9681 - eval_samples_per_second: 82.069 - eval_steps_per_second: 2.565 - epoch: 4.0762 - step: 18200 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 5 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.48.2 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0