End of training
Browse files
README.md
CHANGED
@@ -18,8 +18,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
18 |
|
19 |
This model is a fine-tuned version of [microsoft/git-base](https://huggingface.co/microsoft/git-base) on an unknown dataset.
|
20 |
It achieves the following results on the evaluation set:
|
21 |
-
- Loss: 0.
|
22 |
-
- Accuracy: 0.
|
23 |
|
24 |
## Model description
|
25 |
|
@@ -38,130 +38,23 @@ More information needed
|
|
38 |
### Training hyperparameters
|
39 |
|
40 |
The following hyperparameters were used during training:
|
41 |
-
- learning_rate:
|
42 |
- train_batch_size: 128
|
43 |
- eval_batch_size: 128
|
44 |
- seed: 42
|
45 |
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
46 |
- lr_scheduler_type: linear
|
47 |
-
- num_epochs:
|
48 |
- mixed_precision_training: Native AMP
|
49 |
|
50 |
### Training results
|
51 |
|
52 |
-
| Training Loss | Epoch | Step
|
53 |
-
|
54 |
-
| 0.
|
55 |
-
| 0.
|
56 |
-
| 0.
|
57 |
-
| 0.
|
58 |
-
| 0.1545 | 0.2239 | 500 | 0.1474 | 0.2791 |
|
59 |
-
| 0.119 | 0.2687 | 600 | 0.1157 | 0.2326 |
|
60 |
-
| 0.122 | 0.3135 | 700 | 0.0876 | 0.4186 |
|
61 |
-
| 0.1132 | 0.3583 | 800 | 0.0820 | 0.4593 |
|
62 |
-
| 0.1225 | 0.4030 | 900 | 0.0959 | 0.3779 |
|
63 |
-
| 0.0971 | 0.4478 | 1000 | 0.0729 | 0.4884 |
|
64 |
-
| 0.0861 | 0.4926 | 1100 | 0.0606 | 0.5291 |
|
65 |
-
| 0.0809 | 0.5374 | 1200 | 0.0630 | 0.5174 |
|
66 |
-
| 0.06 | 0.5822 | 1300 | 0.0485 | 0.6919 |
|
67 |
-
| 0.0602 | 0.6270 | 1400 | 0.0531 | 0.6105 |
|
68 |
-
| 0.075 | 0.6717 | 1500 | 0.0452 | 0.5988 |
|
69 |
-
| 0.0477 | 0.7165 | 1600 | 0.0360 | 0.6977 |
|
70 |
-
| 0.0542 | 0.7613 | 1700 | 0.0360 | 0.7209 |
|
71 |
-
| 0.0455 | 0.8061 | 1800 | 0.0411 | 0.7151 |
|
72 |
-
| 0.0424 | 0.8509 | 1900 | 0.0377 | 0.6977 |
|
73 |
-
| 0.0334 | 0.8957 | 2000 | 0.0274 | 0.7674 |
|
74 |
-
| 0.0443 | 0.9404 | 2100 | 0.0276 | 0.7733 |
|
75 |
-
| 0.0366 | 0.9852 | 2200 | 0.0365 | 0.6977 |
|
76 |
-
| 0.0285 | 1.0300 | 2300 | 0.0366 | 0.7384 |
|
77 |
-
| 0.031 | 1.0748 | 2400 | 0.0379 | 0.8023 |
|
78 |
-
| 0.0389 | 1.1196 | 2500 | 0.0383 | 0.6977 |
|
79 |
-
| 0.0325 | 1.1644 | 2600 | 0.0252 | 0.7442 |
|
80 |
-
| 0.0233 | 1.2091 | 2700 | 0.0229 | 0.8256 |
|
81 |
-
| 0.0304 | 1.2539 | 2800 | 0.0130 | 0.8663 |
|
82 |
-
| 0.0258 | 1.2987 | 2900 | 0.0237 | 0.8081 |
|
83 |
-
| 0.0225 | 1.3435 | 3000 | 0.0254 | 0.7616 |
|
84 |
-
| 0.0243 | 1.3883 | 3100 | 0.0230 | 0.8372 |
|
85 |
-
| 0.0244 | 1.4330 | 3200 | 0.0215 | 0.8605 |
|
86 |
-
| 0.0163 | 1.4778 | 3300 | 0.0185 | 0.8721 |
|
87 |
-
| 0.0179 | 1.5226 | 3400 | 0.0134 | 0.8605 |
|
88 |
-
| 0.0224 | 1.5674 | 3500 | 0.0325 | 0.8081 |
|
89 |
-
| 0.0123 | 1.6122 | 3600 | 0.0173 | 0.8605 |
|
90 |
-
| 0.0165 | 1.6570 | 3700 | 0.0271 | 0.8430 |
|
91 |
-
| 0.0246 | 1.7017 | 3800 | 0.0284 | 0.8023 |
|
92 |
-
| 0.0171 | 1.7465 | 3900 | 0.0189 | 0.8605 |
|
93 |
-
| 0.0163 | 1.7913 | 4000 | 0.0111 | 0.9012 |
|
94 |
-
| 0.0131 | 1.8361 | 4100 | 0.0125 | 0.9012 |
|
95 |
-
| 0.0145 | 1.8809 | 4200 | 0.0064 | 0.9419 |
|
96 |
-
| 0.0128 | 1.9257 | 4300 | 0.0105 | 0.9128 |
|
97 |
-
| 0.0227 | 1.9704 | 4400 | 0.0151 | 0.8488 |
|
98 |
-
| 0.0086 | 2.0152 | 4500 | 0.0133 | 0.9012 |
|
99 |
-
| 0.0094 | 2.0600 | 4600 | 0.0203 | 0.8663 |
|
100 |
-
| 0.0136 | 2.1048 | 4700 | 0.0231 | 0.9128 |
|
101 |
-
| 0.0126 | 2.1496 | 4800 | 0.0297 | 0.8837 |
|
102 |
-
| 0.0086 | 2.1944 | 4900 | 0.0159 | 0.8953 |
|
103 |
-
| 0.0137 | 2.2391 | 5000 | 0.0107 | 0.8837 |
|
104 |
-
| 0.0129 | 2.2839 | 5100 | 0.0091 | 0.8895 |
|
105 |
-
| 0.0117 | 2.3287 | 5200 | 0.0163 | 0.9360 |
|
106 |
-
| 0.0096 | 2.3735 | 5300 | 0.0161 | 0.9186 |
|
107 |
-
| 0.0112 | 2.4183 | 5400 | 0.0220 | 0.9128 |
|
108 |
-
| 0.0086 | 2.4631 | 5500 | 0.0205 | 0.8953 |
|
109 |
-
| 0.0163 | 2.5078 | 5600 | 0.0308 | 0.8430 |
|
110 |
-
| 0.0073 | 2.5526 | 5700 | 0.0145 | 0.8663 |
|
111 |
-
| 0.0073 | 2.5974 | 5800 | 0.0176 | 0.9360 |
|
112 |
-
| 0.0102 | 2.6422 | 5900 | 0.0165 | 0.9128 |
|
113 |
-
| 0.01 | 2.6870 | 6000 | 0.0152 | 0.8953 |
|
114 |
-
| 0.0084 | 2.7318 | 6100 | 0.0173 | 0.9302 |
|
115 |
-
| 0.0068 | 2.7765 | 6200 | 0.0166 | 0.9477 |
|
116 |
-
| 0.0086 | 2.8213 | 6300 | 0.0104 | 0.9302 |
|
117 |
-
| 0.0067 | 2.8661 | 6400 | 0.0215 | 0.8895 |
|
118 |
-
| 0.0056 | 2.9109 | 6500 | 0.0202 | 0.9070 |
|
119 |
-
| 0.0083 | 2.9557 | 6600 | 0.0240 | 0.8953 |
|
120 |
-
| 0.0074 | 3.0004 | 6700 | 0.0043 | 0.9419 |
|
121 |
-
| 0.0038 | 3.0452 | 6800 | 0.0163 | 0.9360 |
|
122 |
-
| 0.0032 | 3.0900 | 6900 | 0.0186 | 0.8953 |
|
123 |
-
| 0.0034 | 3.1348 | 7000 | 0.0121 | 0.9593 |
|
124 |
-
| 0.005 | 3.1796 | 7100 | 0.0064 | 0.9535 |
|
125 |
-
| 0.0043 | 3.2244 | 7200 | 0.0115 | 0.9128 |
|
126 |
-
| 0.0063 | 3.2691 | 7300 | 0.0173 | 0.9302 |
|
127 |
-
| 0.0042 | 3.3139 | 7400 | 0.0094 | 0.9012 |
|
128 |
-
| 0.0031 | 3.3587 | 7500 | 0.0129 | 0.9302 |
|
129 |
-
| 0.0053 | 3.4035 | 7600 | 0.0147 | 0.9128 |
|
130 |
-
| 0.0067 | 3.4483 | 7700 | 0.0262 | 0.9244 |
|
131 |
-
| 0.0049 | 3.4931 | 7800 | 0.0141 | 0.9419 |
|
132 |
-
| 0.0015 | 3.5378 | 7900 | 0.0261 | 0.8953 |
|
133 |
-
| 0.0052 | 3.5826 | 8000 | 0.0193 | 0.8953 |
|
134 |
-
| 0.0046 | 3.6274 | 8100 | 0.0228 | 0.9012 |
|
135 |
-
| 0.0028 | 3.6722 | 8200 | 0.0241 | 0.9070 |
|
136 |
-
| 0.0035 | 3.7170 | 8300 | 0.0152 | 0.9302 |
|
137 |
-
| 0.0051 | 3.7618 | 8400 | 0.0205 | 0.9419 |
|
138 |
-
| 0.0024 | 3.8065 | 8500 | 0.0210 | 0.9302 |
|
139 |
-
| 0.0023 | 3.8513 | 8600 | 0.0099 | 0.9477 |
|
140 |
-
| 0.0013 | 3.8961 | 8700 | 0.0123 | 0.9419 |
|
141 |
-
| 0.0025 | 3.9409 | 8800 | 0.0151 | 0.8895 |
|
142 |
-
| 0.0034 | 3.9857 | 8900 | 0.0213 | 0.9477 |
|
143 |
-
| 0.0019 | 4.0305 | 9000 | 0.0264 | 0.9012 |
|
144 |
-
| 0.0031 | 4.0752 | 9100 | 0.0226 | 0.9012 |
|
145 |
-
| 0.0021 | 4.1200 | 9200 | 0.0134 | 0.9535 |
|
146 |
-
| 0.0028 | 4.1648 | 9300 | 0.0117 | 0.9477 |
|
147 |
-
| 0.0027 | 4.2096 | 9400 | 0.0035 | 0.9709 |
|
148 |
-
| 0.0016 | 4.2544 | 9500 | 0.0095 | 0.9128 |
|
149 |
-
| 0.0026 | 4.2991 | 9600 | 0.0204 | 0.9302 |
|
150 |
-
| 0.0016 | 4.3439 | 9700 | 0.0180 | 0.9419 |
|
151 |
-
| 0.0009 | 4.3887 | 9800 | 0.0189 | 0.9477 |
|
152 |
-
| 0.0013 | 4.4335 | 9900 | 0.0227 | 0.9360 |
|
153 |
-
| 0.0008 | 4.4783 | 10000 | 0.0223 | 0.9128 |
|
154 |
-
| 0.0016 | 4.5231 | 10100 | 0.0191 | 0.9593 |
|
155 |
-
| 0.001 | 4.5678 | 10200 | 0.0155 | 0.9709 |
|
156 |
-
| 0.002 | 4.6126 | 10300 | 0.0162 | 0.9360 |
|
157 |
-
| 0.0016 | 4.6574 | 10400 | 0.0158 | 0.9593 |
|
158 |
-
| 0.0025 | 4.7022 | 10500 | 0.0191 | 0.9535 |
|
159 |
-
| 0.0004 | 4.7470 | 10600 | 0.0130 | 0.9535 |
|
160 |
-
| 0.0012 | 4.7918 | 10700 | 0.0101 | 0.9593 |
|
161 |
-
| 0.0012 | 4.8365 | 10800 | 0.0128 | 0.9419 |
|
162 |
-
| 0.0009 | 4.8813 | 10900 | 0.0115 | 0.9535 |
|
163 |
-
| 0.0014 | 4.9261 | 11000 | 0.0117 | 0.9477 |
|
164 |
-
| 0.0006 | 4.9709 | 11100 | 0.0113 | 0.9477 |
|
165 |
|
166 |
|
167 |
### Framework versions
|
|
|
18 |
|
19 |
This model is a fine-tuned version of [microsoft/git-base](https://huggingface.co/microsoft/git-base) on an unknown dataset.
|
20 |
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.0178
|
22 |
+
- Accuracy: 0.9535
|
23 |
|
24 |
## Model description
|
25 |
|
|
|
38 |
### Training hyperparameters
|
39 |
|
40 |
The following hyperparameters were used during training:
|
41 |
+
- learning_rate: 1e-05
|
42 |
- train_batch_size: 128
|
43 |
- eval_batch_size: 128
|
44 |
- seed: 42
|
45 |
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
46 |
- lr_scheduler_type: linear
|
47 |
+
- num_epochs: 0.2
|
48 |
- mixed_precision_training: Native AMP
|
49 |
|
50 |
### Training results
|
51 |
|
52 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
53 |
+
|:-------------:|:------:|:----:|:---------------:|:--------:|
|
54 |
+
| 0.0025 | 0.0448 | 100 | 0.0226 | 0.9244 |
|
55 |
+
| 0.0013 | 0.0896 | 200 | 0.0133 | 0.9244 |
|
56 |
+
| 0.0006 | 0.1343 | 300 | 0.0205 | 0.9419 |
|
57 |
+
| 0.0004 | 0.1791 | 400 | 0.0178 | 0.9535 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
|
60 |
### Framework versions
|