File size: 5,518 Bytes
fdf0276
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
---
language: en
license: other
tags:
  - qwen
  - grpo
  - instruct
  - fine-tuned
  - reasoning
  - 3b
  - menda
  - chat
  - transformers
library_name: transformers
datasets:
  - gsm8k
model-index:
  - name: Menda-3b-Optim-100
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          type: gsm8k
          name: GSM8K
        metrics:
          - name: Accuracy
            type: accuracy
            value: 70.0
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          type: mmlu
          name: MMLU (Overall)
        metrics:
          - name: Accuracy
            type: accuracy
            value: 70.35
---

# Menda-3b-Optim-100: Optimized GRPO-Tuned Qwen2.5 Model

Menda-3b-Optim-100 is a fine-tuned version of Qwen2.5-3B-Instruct, trained with an optimized GRPO (Guided Reinforcement from Preference Optimization) methodology for 100 steps. This model shows significantly improved performance on reasoning benchmarks and achieves the highest MMLU score among all Menda-3B checkpoints.

## Model Details

- **Base Model**: Qwen/Qwen2.5-3B-Instruct
- **Training Method**: Optimized GRPO with enhanced reward functions
- **Training Steps**: 100
- **Parameters**: 3 billion
- **Context Length**: 32K tokens
- **Training Data**: GSM8K (mathematical reasoning)
- **Chat Template**: Uses the Qwen2 chat template

## Optimization Improvements

This model uses several key optimizations over the standard GRPO approach:

1. **Higher Learning Rate**: 2e-5 (4x higher than standard)
2. **Improved Scheduler**: Cosine with restarts
3. **Enhanced Reward Functions**:
   - Continuous correctness rewards with partial credit
   - Multi-component reasoning quality assessment
   - Format validation with both strict and soft checks
4. **Adjusted Batch Processing**: Optimized gradient accumulation

## Benchmark Results

Menda-3b-Optim-100 has been evaluated on several standard benchmarks:

| Benchmark | Task Type | Accuracy |
|-----------|-----------|----------|
| GSM8K | Mathematical Reasoning | 70.0% |
| OpenBookQA | Knowledge-based QA | 20.0% (40.0% normalized) |

### MMLU Performance

| MMLU Category | Score |
|---------------|-------|
| Overall | 70.35% |
| Humanities | 76.15% |
| Social Sciences | 76.67% |
| STEM | 61.58% |
| Other | 71.54% |

## Key Strengths

- **Highest MMLU Score**: This checkpoint achieves the highest overall MMLU score (70.35%) among all Menda-3B checkpoints.
- **Strong Mathematical Reasoning**: Excellent 70% performance on GSM8K, demonstrating strong mathematical problem-solving capabilities.
- **Balanced Performance**: Maintains strong performance across diverse knowledge domains.
- **Efficient Training**: Achieves superior results with minimal training (only 100 steps).
- **Subject-Specific Excellence**: Perfect 100% on Logical Fallacies, Medical Genetics, Professional Psychology, and College Biology.

## Chat Format

This model uses the standard Qwen2 chat template. For best results when using the model directly, format your prompts as follows:

```
<|im_start|>system
You are a helpful AI assistant.<|im_end|>
<|im_start|>user
Your question here<|im_end|>
<|im_start|>assistant
```

When using the model through the Hugging Face Transformers library, the chat template will be applied automatically when using the `chat_template` functionality.

## Usage Examples

### Basic Usage with Transformers

```python
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "weathermanj/Menda-3b-Optim-100"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype="auto",
    device_map="auto"
)

prompt = "Explain the concept of machine learning in simple terms."
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_length=300)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(response)
```

### Chat Usage with Transformers

```python
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "weathermanj/Menda-3b-Optim-100"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype="auto",
    device_map="auto"
)

messages = [
    {"role": "system", "content": "You are a helpful AI assistant."},
    {"role": "user", "content": "Give me a short introduction to large language models."}
]
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)

generated_ids = model.generate(
    **model_inputs,
    max_new_tokens=512
)
generated_ids = [
    output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]

response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)
```

## Training Configuration

The model was trained using the optimized GRPO methodology with the following configuration:

- **LoRA Rank**: 128
- **Learning Rate**: 2e-5
- **Optimizer**: AdamW (8-bit)
- **Batch Size**: 1 per device
- **Gradient Accumulation Steps**: 8
- **Scheduler**: Cosine with restarts
- **Training Samples**: 100 examples from GSM8K

## License

This model inherits the license of the base Qwen2.5-3B-Instruct model. Please refer to the [Qwen2 license](https://huggingface.co/Qwen/Qwen2-3B-Instruct/blob/main/LICENSE) for details.