Konstantin
commited on
Commit
·
ab52e38
1
Parent(s):
e0f33e4
add files and requirements
Browse files- handler.py +126 -0
- requirements.txt +5 -0
handler.py
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, List, Any
|
2 |
+
import torch
|
3 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
|
4 |
+
from fastapi.responses import StreamingResponse
|
5 |
+
import uuid
|
6 |
+
import time
|
7 |
+
import json
|
8 |
+
from threading import Thread
|
9 |
+
|
10 |
+
class EndpointHandler:
|
11 |
+
def __init__(self, path: str = "openai/gpt-oss-20b"):
|
12 |
+
# Load tokenizer and model
|
13 |
+
self.tokenizer = AutoTokenizer.from_pretrained(path)
|
14 |
+
self.model = AutoModelForCausalLM.from_pretrained(path)
|
15 |
+
self.model.eval()
|
16 |
+
|
17 |
+
# Determine the computation device
|
18 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
19 |
+
self.model.to(self.device)
|
20 |
+
|
21 |
+
def openai_id(prefix: str) -> str:
|
22 |
+
return f"{prefix}-{uuid.uuid4().hex[:24]}"
|
23 |
+
|
24 |
+
def format_non_stream(self, model: str, text: str, prompt_length: int, completion_length: int, total_tokens: int):
|
25 |
+
# Create OpenAI-compatible payload
|
26 |
+
return {
|
27 |
+
"id": self.openai_id("chatcmpl"),
|
28 |
+
"object": "chat.completion",
|
29 |
+
"created": int(time.time()),
|
30 |
+
"model": model,
|
31 |
+
"choices": [{
|
32 |
+
"index": 0,
|
33 |
+
"message": {"role": "assistant", "content": text},
|
34 |
+
"finish_reason": "stop"
|
35 |
+
}],
|
36 |
+
"usage": {
|
37 |
+
"prompt_tokens": prompt_length,
|
38 |
+
"completion_tokens": completion_length,
|
39 |
+
"total_tokens": total_tokens
|
40 |
+
}
|
41 |
+
}
|
42 |
+
|
43 |
+
def format_stream(self, model: str, token: str, usage) -> bytes:
|
44 |
+
payload = {
|
45 |
+
"id": self.openai_id("chatcmpl"),
|
46 |
+
"object": "chat.completion.chunk",
|
47 |
+
"created": int(time.time()),
|
48 |
+
"model": model,
|
49 |
+
"choices": [{
|
50 |
+
"index": 0,
|
51 |
+
"delta": {
|
52 |
+
"content": token,
|
53 |
+
"function_call": None,
|
54 |
+
"refusal": None,
|
55 |
+
"role": None,
|
56 |
+
"tool_calls": None
|
57 |
+
},
|
58 |
+
"finish_reason": None,
|
59 |
+
"logprobs": None
|
60 |
+
}],
|
61 |
+
"usage": usage
|
62 |
+
}
|
63 |
+
|
64 |
+
return f"data: {json.dumps(payload)}\n\n".encode('utf-8')
|
65 |
+
|
66 |
+
def generate(self, messages, model: str):
|
67 |
+
model_inputs = self.tokenizer(messages, return_tensors="pt").to(self.device)
|
68 |
+
full_output = self.model.generate(**model_inputs, max_new_tokens=2048)
|
69 |
+
generated_ids = [
|
70 |
+
output_ids[len(input_ids):]
|
71 |
+
for input_ids, output_ids in zip(model_inputs.input_ids, full_output)
|
72 |
+
]
|
73 |
+
text = self.tokenizer.batch_decode(generated_ids, skip_special_tokens=False)[0]
|
74 |
+
|
75 |
+
input_length = model_inputs.input_ids.shape[1] # Prompt tokens
|
76 |
+
output_length = full_output.shape[1] # Total tokens (prompt + completion)
|
77 |
+
completion_tokens = output_length - input_length
|
78 |
+
|
79 |
+
return self.format_non_stream(model, text, input_length, completion_tokens, output_length)
|
80 |
+
|
81 |
+
def stream(self, messages, model):
|
82 |
+
model_inputs = self.tokenizer(messages, return_tensors="pt").to(self.device)
|
83 |
+
input_len = model_inputs.input_ids.shape[1]
|
84 |
+
streamer = TextIteratorStreamer(
|
85 |
+
self.tokenizer,
|
86 |
+
skip_prompt=True,
|
87 |
+
skip_special_tokens=True
|
88 |
+
)
|
89 |
+
|
90 |
+
generation_kwargs = dict(
|
91 |
+
**model_inputs,
|
92 |
+
streamer=streamer,
|
93 |
+
max_new_tokens=2048
|
94 |
+
)
|
95 |
+
|
96 |
+
thread = Thread(target=self.model.generate, kwargs=generation_kwargs)
|
97 |
+
thread.start()
|
98 |
+
|
99 |
+
completion_tokens = 0
|
100 |
+
for token in streamer:
|
101 |
+
# Count tokens in each chunk
|
102 |
+
token_ids = self.tokenizer.encode(token, add_special_tokens=False)
|
103 |
+
token_count = len(token_ids)
|
104 |
+
completion_tokens += token_count
|
105 |
+
|
106 |
+
yield self.format_stream(model, token, None)
|
107 |
+
|
108 |
+
# Final chunk with stop reason and token counts
|
109 |
+
yield self.format_stream(model, "", {
|
110 |
+
"prompt_tokens": input_len,
|
111 |
+
"completion_tokens": completion_tokens,
|
112 |
+
"total_tokens": input_len + completion_tokens
|
113 |
+
})
|
114 |
+
|
115 |
+
def __call__(self, data: Dict[str, Any]):
|
116 |
+
messages = data.get("messages")
|
117 |
+
model = data.get("model")
|
118 |
+
stream = data.get("stream", False)
|
119 |
+
|
120 |
+
if stream is False:
|
121 |
+
return self.generate(messages, model)
|
122 |
+
else:
|
123 |
+
return StreamingResponse(
|
124 |
+
self.stream(messages, model),
|
125 |
+
media_type="text/event-stream"
|
126 |
+
)
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
torch
|
3 |
+
kernels
|
4 |
+
fastapi
|
5 |
+
triton
|