wcyat commited on
Commit
bf6d280
·
verified ·
1 Parent(s): 534b6a7

Upload folder using huggingface_hub

Browse files
Files changed (6) hide show
  1. README.md +184 -39
  2. adapter_model.safetensors +1 -1
  3. optimizer.pt +3 -0
  4. rng_state.pth +3 -0
  5. scheduler.pt +3 -0
  6. trainer_state.json +208 -0
README.md CHANGED
@@ -1,57 +1,202 @@
1
  ---
2
  base_model: wcyat/cantonesellm-lihkg-story-merged
3
- library_name: transformers
4
- model_name: cantonesellm-lihkg-story-lora-3
5
- tags:
6
- - generated_from_trainer
7
- - trl
8
- - sft
9
- licence: license
10
  ---
11
 
12
- # Model Card for cantonesellm-lihkg-story-lora-3
13
 
14
- This model is a fine-tuned version of [wcyat/cantonesellm-lihkg-story-merged](https://huggingface.co/wcyat/cantonesellm-lihkg-story-merged).
15
- It has been trained using [TRL](https://github.com/huggingface/trl).
16
 
17
- ## Quick start
18
 
19
- ```python
20
- from transformers import pipeline
21
 
22
- question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
23
- generator = pipeline("text-generation", model="wcyat/cantonesellm-lihkg-story-lora-3", device="cuda")
24
- output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
25
- print(output["generated_text"])
26
- ```
27
 
28
- ## Training procedure
29
 
 
30
 
31
 
32
- This model was trained with SFT.
33
 
34
- ### Framework versions
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35
 
36
- - TRL: 0.12.1
37
- - Transformers: 4.46.2
38
- - Pytorch: 2.5.1+cu121
39
- - Datasets: 3.1.0
40
- - Tokenizers: 0.20.3
41
 
42
- ## Citations
43
 
 
44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45
 
46
- Cite TRL as:
47
-
48
- ```bibtex
49
- @misc{vonwerra2022trl,
50
- title = {{TRL: Transformer Reinforcement Learning}},
51
- author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
52
- year = 2020,
53
- journal = {GitHub repository},
54
- publisher = {GitHub},
55
- howpublished = {\url{https://github.com/huggingface/trl}}
56
- }
57
- ```
 
1
  ---
2
  base_model: wcyat/cantonesellm-lihkg-story-merged
3
+ library_name: peft
 
 
 
 
 
 
4
  ---
5
 
6
+ # Model Card for Model ID
7
 
8
+ <!-- Provide a quick summary of what the model is/does. -->
 
9
 
 
10
 
 
 
11
 
12
+ ## Model Details
 
 
 
 
13
 
14
+ ### Model Description
15
 
16
+ <!-- Provide a longer summary of what this model is. -->
17
 
18
 
 
19
 
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
 
111
+ <!-- This should link to a Dataset Card if possible. -->
 
 
 
 
112
 
113
+ [More Information Needed]
114
 
115
+ #### Factors
116
 
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
 
202
+ - PEFT 0.13.2
 
 
 
 
 
 
 
 
 
 
 
adapter_model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:b69c4f7077170286aab1c5b453342c5a6cef26a41493f039e6f66addbaeb3e14
3
  size 104874832
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4b12bbc70fd9560e9f22424665679def69d18b79b107e7004a9613aa5b325c3e
3
  size 104874832
optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8be6ebd58a157860651976b73338ace29c42d2dd71e705115da01fa89662dafb
3
+ size 209793914
rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a9813a399c13388485ab02bed2a5f88cf56b7287a90da81a7102aab8c397387b
3
+ size 14244
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c275015688a17ce7aa2bf271a7bc97b17d692d82f56118639a1f1ff49399c4f8
3
+ size 1064
trainer_state.json ADDED
@@ -0,0 +1,208 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.9412650602409639,
5
+ "eval_steps": 500,
6
+ "global_step": 625,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.03765060240963856,
13
+ "grad_norm": 0.29182711243629456,
14
+ "learning_rate": 0.0002,
15
+ "loss": 2.048,
16
+ "step": 25
17
+ },
18
+ {
19
+ "epoch": 0.07530120481927711,
20
+ "grad_norm": 0.355770081281662,
21
+ "learning_rate": 0.0002,
22
+ "loss": 1.9254,
23
+ "step": 50
24
+ },
25
+ {
26
+ "epoch": 0.11295180722891567,
27
+ "grad_norm": 0.24575483798980713,
28
+ "learning_rate": 0.0002,
29
+ "loss": 1.8281,
30
+ "step": 75
31
+ },
32
+ {
33
+ "epoch": 0.15060240963855423,
34
+ "grad_norm": 0.370360791683197,
35
+ "learning_rate": 0.0002,
36
+ "loss": 1.8354,
37
+ "step": 100
38
+ },
39
+ {
40
+ "epoch": 0.18825301204819278,
41
+ "grad_norm": 0.30005237460136414,
42
+ "learning_rate": 0.0002,
43
+ "loss": 1.8066,
44
+ "step": 125
45
+ },
46
+ {
47
+ "epoch": 0.22590361445783133,
48
+ "grad_norm": 0.4004781246185303,
49
+ "learning_rate": 0.0002,
50
+ "loss": 2.0024,
51
+ "step": 150
52
+ },
53
+ {
54
+ "epoch": 0.2635542168674699,
55
+ "grad_norm": 0.37836953997612,
56
+ "learning_rate": 0.0002,
57
+ "loss": 1.9717,
58
+ "step": 175
59
+ },
60
+ {
61
+ "epoch": 0.30120481927710846,
62
+ "grad_norm": 0.38621386885643005,
63
+ "learning_rate": 0.0002,
64
+ "loss": 2.0938,
65
+ "step": 200
66
+ },
67
+ {
68
+ "epoch": 0.338855421686747,
69
+ "grad_norm": 0.32652556896209717,
70
+ "learning_rate": 0.0002,
71
+ "loss": 1.9128,
72
+ "step": 225
73
+ },
74
+ {
75
+ "epoch": 0.37650602409638556,
76
+ "grad_norm": 0.3783712387084961,
77
+ "learning_rate": 0.0002,
78
+ "loss": 1.7907,
79
+ "step": 250
80
+ },
81
+ {
82
+ "epoch": 0.4141566265060241,
83
+ "grad_norm": 0.2575533390045166,
84
+ "learning_rate": 0.0002,
85
+ "loss": 1.8501,
86
+ "step": 275
87
+ },
88
+ {
89
+ "epoch": 0.45180722891566266,
90
+ "grad_norm": 0.37206143140792847,
91
+ "learning_rate": 0.0002,
92
+ "loss": 1.7147,
93
+ "step": 300
94
+ },
95
+ {
96
+ "epoch": 0.4894578313253012,
97
+ "grad_norm": 0.3018392324447632,
98
+ "learning_rate": 0.0002,
99
+ "loss": 1.602,
100
+ "step": 325
101
+ },
102
+ {
103
+ "epoch": 0.5271084337349398,
104
+ "grad_norm": 0.45196229219436646,
105
+ "learning_rate": 0.0002,
106
+ "loss": 1.8455,
107
+ "step": 350
108
+ },
109
+ {
110
+ "epoch": 0.5647590361445783,
111
+ "grad_norm": 0.250590443611145,
112
+ "learning_rate": 0.0002,
113
+ "loss": 1.9206,
114
+ "step": 375
115
+ },
116
+ {
117
+ "epoch": 0.6024096385542169,
118
+ "grad_norm": 0.314155638217926,
119
+ "learning_rate": 0.0002,
120
+ "loss": 1.908,
121
+ "step": 400
122
+ },
123
+ {
124
+ "epoch": 0.6400602409638554,
125
+ "grad_norm": 0.319771409034729,
126
+ "learning_rate": 0.0002,
127
+ "loss": 1.6045,
128
+ "step": 425
129
+ },
130
+ {
131
+ "epoch": 0.677710843373494,
132
+ "grad_norm": 0.4088861346244812,
133
+ "learning_rate": 0.0002,
134
+ "loss": 1.7106,
135
+ "step": 450
136
+ },
137
+ {
138
+ "epoch": 0.7153614457831325,
139
+ "grad_norm": 0.29917973279953003,
140
+ "learning_rate": 0.0002,
141
+ "loss": 1.7349,
142
+ "step": 475
143
+ },
144
+ {
145
+ "epoch": 0.7530120481927711,
146
+ "grad_norm": 0.6233075857162476,
147
+ "learning_rate": 0.0002,
148
+ "loss": 1.9191,
149
+ "step": 500
150
+ },
151
+ {
152
+ "epoch": 0.7906626506024096,
153
+ "grad_norm": 0.24983790516853333,
154
+ "learning_rate": 0.0002,
155
+ "loss": 1.6759,
156
+ "step": 525
157
+ },
158
+ {
159
+ "epoch": 0.8283132530120482,
160
+ "grad_norm": 0.42871519923210144,
161
+ "learning_rate": 0.0002,
162
+ "loss": 1.7982,
163
+ "step": 550
164
+ },
165
+ {
166
+ "epoch": 0.8659638554216867,
167
+ "grad_norm": 0.3003176748752594,
168
+ "learning_rate": 0.0002,
169
+ "loss": 1.7154,
170
+ "step": 575
171
+ },
172
+ {
173
+ "epoch": 0.9036144578313253,
174
+ "grad_norm": 0.4300028681755066,
175
+ "learning_rate": 0.0002,
176
+ "loss": 1.6376,
177
+ "step": 600
178
+ },
179
+ {
180
+ "epoch": 0.9412650602409639,
181
+ "grad_norm": 0.38282954692840576,
182
+ "learning_rate": 0.0002,
183
+ "loss": 1.545,
184
+ "step": 625
185
+ }
186
+ ],
187
+ "logging_steps": 25,
188
+ "max_steps": 664,
189
+ "num_input_tokens_seen": 0,
190
+ "num_train_epochs": 1,
191
+ "save_steps": 25,
192
+ "stateful_callbacks": {
193
+ "TrainerControl": {
194
+ "args": {
195
+ "should_epoch_stop": false,
196
+ "should_evaluate": false,
197
+ "should_log": false,
198
+ "should_save": true,
199
+ "should_training_stop": false
200
+ },
201
+ "attributes": {}
202
+ }
203
+ },
204
+ "total_flos": 2.109390150045696e+16,
205
+ "train_batch_size": 1,
206
+ "trial_name": null,
207
+ "trial_params": null
208
+ }