--- library_name: transformers license: cc-by-4.0 base_model: hon9kon9ize/bert-large-cantonese tags: - generated_from_trainer metrics: - accuracy model-index: - name: bert-suicide-detection-hk-large-new results: [] --- # bert-suicide-detection-hk-large-new This model is a fine-tuned version of [hon9kon9ize/bert-large-cantonese](https://huggingface.co/hon9kon9ize/bert-large-cantonese) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4945 - Accuracy: 0.9085 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.5426 | 0.0604 | 20 | 0.7869 | 0.7451 | | 0.5984 | 0.1208 | 40 | 0.3943 | 0.7908 | | 0.4864 | 0.1813 | 60 | 0.9365 | 0.7843 | | 0.6039 | 0.2417 | 80 | 0.6580 | 0.7712 | | 0.5741 | 0.3021 | 100 | 0.3454 | 0.8235 | | 0.4276 | 0.3625 | 120 | 0.5421 | 0.8170 | | 0.4342 | 0.4230 | 140 | 0.4258 | 0.8562 | | 0.4915 | 0.4834 | 160 | 0.5961 | 0.8301 | | 0.4127 | 0.5438 | 180 | 0.2987 | 0.8693 | | 0.3166 | 0.6042 | 200 | 0.3308 | 0.8693 | | 0.4018 | 0.6647 | 220 | 0.5286 | 0.8039 | | 0.3007 | 0.7251 | 240 | 0.5845 | 0.8627 | | 0.4893 | 0.7855 | 260 | 0.3662 | 0.8627 | | 0.274 | 0.8459 | 280 | 0.3483 | 0.8693 | | 0.5741 | 0.9063 | 300 | 0.3280 | 0.8824 | | 0.3752 | 0.9668 | 320 | 0.5251 | 0.8889 | | 0.2711 | 1.0272 | 340 | 0.6097 | 0.8562 | | 0.2369 | 1.0876 | 360 | 0.5457 | 0.8693 | | 0.3756 | 1.1480 | 380 | 0.6890 | 0.8758 | | 0.6575 | 1.2085 | 400 | 0.4709 | 0.8693 | | 0.3268 | 1.2689 | 420 | 0.5219 | 0.8497 | | 0.3994 | 1.3293 | 440 | 0.4282 | 0.8693 | | 0.0879 | 1.3897 | 460 | 0.6294 | 0.8758 | | 0.2566 | 1.4502 | 480 | 0.7143 | 0.8627 | | 0.2897 | 1.5106 | 500 | 0.6120 | 0.8693 | | 0.321 | 1.5710 | 520 | 0.4749 | 0.8758 | | 0.1871 | 1.6314 | 540 | 0.4392 | 0.9085 | | 0.1654 | 1.6918 | 560 | 0.4663 | 0.9085 | | 0.3166 | 1.7523 | 580 | 0.5048 | 0.8889 | | 0.222 | 1.8127 | 600 | 0.4550 | 0.9085 | | 0.4299 | 1.8731 | 620 | 0.3445 | 0.9085 | | 0.0942 | 1.9335 | 640 | 0.3735 | 0.9281 | | 0.3991 | 1.9940 | 660 | 0.3646 | 0.9085 | | 0.0581 | 2.0544 | 680 | 0.3527 | 0.9085 | | 0.2712 | 2.1148 | 700 | 0.4270 | 0.9020 | | 0.0443 | 2.1752 | 720 | 0.5462 | 0.8954 | | 0.3831 | 2.2356 | 740 | 0.3419 | 0.9216 | | 0.2267 | 2.2961 | 760 | 0.4925 | 0.8889 | | 0.1821 | 2.3565 | 780 | 0.3625 | 0.9216 | | 0.2926 | 2.4169 | 800 | 0.3671 | 0.9020 | | 0.2507 | 2.4773 | 820 | 0.3853 | 0.9020 | | 0.2446 | 2.5378 | 840 | 0.4571 | 0.8954 | | 0.1926 | 2.5982 | 860 | 0.5436 | 0.8497 | | 0.1725 | 2.6586 | 880 | 0.6576 | 0.8497 | | 0.2033 | 2.7190 | 900 | 0.4772 | 0.9020 | | 0.0095 | 2.7795 | 920 | 0.4103 | 0.9150 | | 0.2896 | 2.8399 | 940 | 0.4333 | 0.9085 | | 0.2661 | 2.9003 | 960 | 0.5793 | 0.8889 | | 0.1338 | 2.9607 | 980 | 0.4543 | 0.8954 | | 0.0751 | 3.0211 | 1000 | 0.5029 | 0.8954 | | 0.2093 | 3.0816 | 1020 | 0.4631 | 0.9020 | | 0.2436 | 3.1420 | 1040 | 0.5888 | 0.8693 | | 0.1375 | 3.2024 | 1060 | 0.6457 | 0.8889 | | 0.0049 | 3.2628 | 1080 | 0.6601 | 0.8889 | | 0.0089 | 3.3233 | 1100 | 0.6462 | 0.8824 | | 0.0616 | 3.3837 | 1120 | 0.6607 | 0.8889 | | 0.006 | 3.4441 | 1140 | 0.6243 | 0.9020 | | 0.1769 | 3.5045 | 1160 | 0.5257 | 0.9020 | | 0.0044 | 3.5650 | 1180 | 0.5508 | 0.9085 | | 0.2295 | 3.6254 | 1200 | 0.4846 | 0.9150 | | 0.1175 | 3.6858 | 1220 | 0.4764 | 0.9020 | | 0.0746 | 3.7462 | 1240 | 0.4761 | 0.9020 | | 0.0222 | 3.8066 | 1260 | 0.4836 | 0.9020 | | 0.0012 | 3.8671 | 1280 | 0.4775 | 0.9216 | | 0.2131 | 3.9275 | 1300 | 0.4607 | 0.9020 | | 0.0006 | 3.9879 | 1320 | 0.4935 | 0.9085 | | 0.0758 | 4.0483 | 1340 | 0.4592 | 0.9020 | | 0.1466 | 4.1088 | 1360 | 0.4464 | 0.9085 | | 0.0488 | 4.1692 | 1380 | 0.4816 | 0.9085 | | 0.0014 | 4.2296 | 1400 | 0.4570 | 0.9150 | | 0.082 | 4.2900 | 1420 | 0.4545 | 0.9216 | | 0.0009 | 4.3505 | 1440 | 0.4721 | 0.9150 | | 0.0008 | 4.4109 | 1460 | 0.4874 | 0.9216 | | 0.0014 | 4.4713 | 1480 | 0.5003 | 0.9150 | | 0.1612 | 4.5317 | 1500 | 0.5064 | 0.9150 | | 0.2079 | 4.5921 | 1520 | 0.4994 | 0.9150 | | 0.1423 | 4.6526 | 1540 | 0.4835 | 0.9150 | | 0.0009 | 4.7130 | 1560 | 0.4825 | 0.9085 | | 0.0017 | 4.7734 | 1580 | 0.4918 | 0.9085 | | 0.0648 | 4.8338 | 1600 | 0.4917 | 0.9150 | | 0.0531 | 4.8943 | 1620 | 0.4919 | 0.9085 | | 0.0008 | 4.9547 | 1640 | 0.4945 | 0.9085 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0