Commit
·
b22fbe7
1
Parent(s):
3b39edc
update model card README.md
Browse files
README.md
CHANGED
@@ -24,16 +24,16 @@ model-index:
|
|
24 |
metrics:
|
25 |
- name: Precision
|
26 |
type: precision
|
27 |
-
value:
|
28 |
- name: Recall
|
29 |
type: recall
|
30 |
-
value:
|
31 |
- name: F1
|
32 |
type: f1
|
33 |
-
value:
|
34 |
- name: Accuracy
|
35 |
type: accuracy
|
36 |
-
value:
|
37 |
---
|
38 |
|
39 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -43,11 +43,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
43 |
|
44 |
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the generated dataset.
|
45 |
It achieves the following results on the evaluation set:
|
46 |
-
- Loss: 0.
|
47 |
-
- Precision:
|
48 |
-
- Recall:
|
49 |
-
- F1:
|
50 |
-
- Accuracy:
|
51 |
|
52 |
## Model description
|
53 |
|
@@ -72,32 +72,10 @@ The following hyperparameters were used during training:
|
|
72 |
- seed: 42
|
73 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
74 |
- lr_scheduler_type: linear
|
75 |
-
- training_steps:
|
76 |
|
77 |
### Training results
|
78 |
|
79 |
-
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
80 |
-
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
81 |
-
| No log | 2.0 | 100 | 0.0873 | 0.958 | 0.9716 | 0.9648 | 0.9956 |
|
82 |
-
| No log | 4.0 | 200 | 0.0240 | 0.972 | 0.9858 | 0.9789 | 0.9971 |
|
83 |
-
| No log | 6.0 | 300 | 0.0181 | 0.972 | 0.9858 | 0.9789 | 0.9971 |
|
84 |
-
| No log | 8.0 | 400 | 0.0140 | 0.972 | 0.9858 | 0.9789 | 0.9971 |
|
85 |
-
| 0.1307 | 10.0 | 500 | 0.0106 | 0.972 | 0.9858 | 0.9789 | 0.9971 |
|
86 |
-
| 0.1307 | 12.0 | 600 | 0.0120 | 0.972 | 0.9858 | 0.9789 | 0.9971 |
|
87 |
-
| 0.1307 | 14.0 | 700 | 0.0080 | 0.972 | 0.9858 | 0.9789 | 0.9971 |
|
88 |
-
| 0.1307 | 16.0 | 800 | 0.0108 | 0.972 | 0.9858 | 0.9789 | 0.9971 |
|
89 |
-
| 0.1307 | 18.0 | 900 | 0.0088 | 0.972 | 0.9858 | 0.9789 | 0.9971 |
|
90 |
-
| 0.0107 | 20.0 | 1000 | 0.0059 | 0.9919 | 0.9959 | 0.9939 | 0.9992 |
|
91 |
-
| 0.0107 | 22.0 | 1100 | 0.0040 | 0.9960 | 0.9980 | 0.9970 | 0.9996 |
|
92 |
-
| 0.0107 | 24.0 | 1200 | 0.0021 | 0.9980 | 0.9980 | 0.9980 | 0.9998 |
|
93 |
-
| 0.0107 | 26.0 | 1300 | 0.0048 | 0.9919 | 0.9959 | 0.9939 | 0.9992 |
|
94 |
-
| 0.0107 | 28.0 | 1400 | 0.0033 | 0.9960 | 0.9980 | 0.9970 | 0.9996 |
|
95 |
-
| 0.0031 | 30.0 | 1500 | 0.0021 | 0.9980 | 1.0 | 0.9990 | 0.9998 |
|
96 |
-
| 0.0031 | 32.0 | 1600 | 0.0012 | 1.0 | 1.0 | 1.0 | 1.0 |
|
97 |
-
| 0.0031 | 34.0 | 1700 | 0.0012 | 1.0 | 1.0 | 1.0 | 1.0 |
|
98 |
-
| 0.0031 | 36.0 | 1800 | 0.0012 | 1.0 | 1.0 | 1.0 | 1.0 |
|
99 |
-
| 0.0031 | 38.0 | 1900 | 0.0013 | 1.0 | 1.0 | 1.0 | 1.0 |
|
100 |
-
| 0.0021 | 40.0 | 2000 | 0.0013 | 1.0 | 1.0 | 1.0 | 1.0 |
|
101 |
|
102 |
|
103 |
### Framework versions
|
|
|
24 |
metrics:
|
25 |
- name: Precision
|
26 |
type: precision
|
27 |
+
value: 0.0
|
28 |
- name: Recall
|
29 |
type: recall
|
30 |
+
value: 0.0
|
31 |
- name: F1
|
32 |
type: f1
|
33 |
+
value: 0.0
|
34 |
- name: Accuracy
|
35 |
type: accuracy
|
36 |
+
value: 0.8750789972614282
|
37 |
---
|
38 |
|
39 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
43 |
|
44 |
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the generated dataset.
|
45 |
It achieves the following results on the evaluation set:
|
46 |
+
- Loss: 0.9748
|
47 |
+
- Precision: 0.0
|
48 |
+
- Recall: 0.0
|
49 |
+
- F1: 0.0
|
50 |
+
- Accuracy: 0.8751
|
51 |
|
52 |
## Model description
|
53 |
|
|
|
72 |
- seed: 42
|
73 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
74 |
- lr_scheduler_type: linear
|
75 |
+
- training_steps: 20
|
76 |
|
77 |
### Training results
|
78 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
|
81 |
### Framework versions
|