update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
model-index:
|
6 |
+
- name: XLRS_MediumDataset
|
7 |
+
results: []
|
8 |
+
---
|
9 |
+
|
10 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
11 |
+
should probably proofread and complete it, then remove this comment. -->
|
12 |
+
|
13 |
+
# XLRS_MediumDataset
|
14 |
+
|
15 |
+
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset.
|
16 |
+
It achieves the following results on the evaluation set:
|
17 |
+
- Loss: 0.3156
|
18 |
+
- Wer: 0.2796
|
19 |
+
|
20 |
+
## Model description
|
21 |
+
|
22 |
+
More information needed
|
23 |
+
|
24 |
+
## Intended uses & limitations
|
25 |
+
|
26 |
+
More information needed
|
27 |
+
|
28 |
+
## Training and evaluation data
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Training procedure
|
33 |
+
|
34 |
+
### Training hyperparameters
|
35 |
+
|
36 |
+
The following hyperparameters were used during training:
|
37 |
+
- learning_rate: 0.0001
|
38 |
+
- train_batch_size: 8
|
39 |
+
- eval_batch_size: 8
|
40 |
+
- seed: 42
|
41 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
42 |
+
- lr_scheduler_type: linear
|
43 |
+
- lr_scheduler_warmup_steps: 1000
|
44 |
+
- num_epochs: 30
|
45 |
+
|
46 |
+
### Training results
|
47 |
+
|
48 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
49 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|
|
50 |
+
| 4.6662 | 1.54 | 500 | 3.1089 | 1.0 |
|
51 |
+
| 2.6856 | 3.08 | 1000 | 1.1527 | 1.0257 |
|
52 |
+
| 0.8295 | 4.62 | 1500 | 0.3830 | 0.4426 |
|
53 |
+
| 0.4529 | 6.15 | 2000 | 0.3183 | 0.3827 |
|
54 |
+
| 0.3135 | 7.69 | 2500 | 0.2764 | 0.3517 |
|
55 |
+
| 0.2652 | 9.23 | 3000 | 0.2630 | 0.3145 |
|
56 |
+
| 0.2065 | 10.77 | 3500 | 0.2679 | 0.3141 |
|
57 |
+
| 0.1802 | 12.31 | 4000 | 0.3010 | 0.3057 |
|
58 |
+
| 0.1557 | 13.85 | 4500 | 0.2971 | 0.3017 |
|
59 |
+
| 0.1438 | 15.38 | 5000 | 0.2953 | 0.3020 |
|
60 |
+
| 0.1206 | 16.92 | 5500 | 0.3185 | 0.2959 |
|
61 |
+
| 0.1104 | 18.46 | 6000 | 0.3114 | 0.2871 |
|
62 |
+
| 0.1005 | 20.0 | 6500 | 0.3230 | 0.2873 |
|
63 |
+
| 0.092 | 21.54 | 7000 | 0.3130 | 0.2844 |
|
64 |
+
| 0.0946 | 23.08 | 7500 | 0.3130 | 0.2837 |
|
65 |
+
| 0.09 | 24.62 | 8000 | 0.3189 | 0.2787 |
|
66 |
+
| 0.0822 | 26.15 | 8500 | 0.3200 | 0.2783 |
|
67 |
+
| 0.0805 | 27.69 | 9000 | 0.3247 | 0.2777 |
|
68 |
+
| 0.0827 | 29.23 | 9500 | 0.3156 | 0.2796 |
|
69 |
+
|
70 |
+
|
71 |
+
### Framework versions
|
72 |
+
|
73 |
+
- Transformers 4.17.0
|
74 |
+
- Pytorch 2.5.1+cu121
|
75 |
+
- Datasets 1.18.3
|
76 |
+
- Tokenizers 0.20.3
|