wavyduck commited on
Commit
a52c3fc
·
1 Parent(s): b4d846a

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +76 -0
README.md ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ model-index:
6
+ - name: XLRS_MediumDataset
7
+ results: []
8
+ ---
9
+
10
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
11
+ should probably proofread and complete it, then remove this comment. -->
12
+
13
+ # XLRS_MediumDataset
14
+
15
+ This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset.
16
+ It achieves the following results on the evaluation set:
17
+ - Loss: 0.3156
18
+ - Wer: 0.2796
19
+
20
+ ## Model description
21
+
22
+ More information needed
23
+
24
+ ## Intended uses & limitations
25
+
26
+ More information needed
27
+
28
+ ## Training and evaluation data
29
+
30
+ More information needed
31
+
32
+ ## Training procedure
33
+
34
+ ### Training hyperparameters
35
+
36
+ The following hyperparameters were used during training:
37
+ - learning_rate: 0.0001
38
+ - train_batch_size: 8
39
+ - eval_batch_size: 8
40
+ - seed: 42
41
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
42
+ - lr_scheduler_type: linear
43
+ - lr_scheduler_warmup_steps: 1000
44
+ - num_epochs: 30
45
+
46
+ ### Training results
47
+
48
+ | Training Loss | Epoch | Step | Validation Loss | Wer |
49
+ |:-------------:|:-----:|:----:|:---------------:|:------:|
50
+ | 4.6662 | 1.54 | 500 | 3.1089 | 1.0 |
51
+ | 2.6856 | 3.08 | 1000 | 1.1527 | 1.0257 |
52
+ | 0.8295 | 4.62 | 1500 | 0.3830 | 0.4426 |
53
+ | 0.4529 | 6.15 | 2000 | 0.3183 | 0.3827 |
54
+ | 0.3135 | 7.69 | 2500 | 0.2764 | 0.3517 |
55
+ | 0.2652 | 9.23 | 3000 | 0.2630 | 0.3145 |
56
+ | 0.2065 | 10.77 | 3500 | 0.2679 | 0.3141 |
57
+ | 0.1802 | 12.31 | 4000 | 0.3010 | 0.3057 |
58
+ | 0.1557 | 13.85 | 4500 | 0.2971 | 0.3017 |
59
+ | 0.1438 | 15.38 | 5000 | 0.2953 | 0.3020 |
60
+ | 0.1206 | 16.92 | 5500 | 0.3185 | 0.2959 |
61
+ | 0.1104 | 18.46 | 6000 | 0.3114 | 0.2871 |
62
+ | 0.1005 | 20.0 | 6500 | 0.3230 | 0.2873 |
63
+ | 0.092 | 21.54 | 7000 | 0.3130 | 0.2844 |
64
+ | 0.0946 | 23.08 | 7500 | 0.3130 | 0.2837 |
65
+ | 0.09 | 24.62 | 8000 | 0.3189 | 0.2787 |
66
+ | 0.0822 | 26.15 | 8500 | 0.3200 | 0.2783 |
67
+ | 0.0805 | 27.69 | 9000 | 0.3247 | 0.2777 |
68
+ | 0.0827 | 29.23 | 9500 | 0.3156 | 0.2796 |
69
+
70
+
71
+ ### Framework versions
72
+
73
+ - Transformers 4.17.0
74
+ - Pytorch 2.5.1+cu121
75
+ - Datasets 1.18.3
76
+ - Tokenizers 0.20.3