File size: 6,438 Bytes
2800303 fe60842 2800303 fe60842 2800303 49ebdfe c759618 2800303 fe60842 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
---
library_name: transformers
tags:
- mergekit
- merge
base_model:
- Qwen/Qwen2.5-14B-Instruct
- Qwen/Qwen2.5-Coder-14B
- deepseek-ai/DeepSeek-R1-Distill-Qwen-14B
- huihui-ai/DeepSeek-R1-Distill-Qwen-14B-abliterated-v2
- tanliboy/lambda-qwen2.5-14b-dpo-test
- SicariusSicariiStuff/Impish_QWEN_14B-1M
- Qwen/Qwen2.5-14B
model-index:
- name: li-14b-v0.4
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 81.33
name: strict accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=wanlige/li-14b-v0.4
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 50.38
name: normalized accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=wanlige/li-14b-v0.4
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 55.74
name: exact match
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=wanlige/li-14b-v0.4
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 11.86
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=wanlige/li-14b-v0.4
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 16.35
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=wanlige/li-14b-v0.4
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 46.3
name: accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=wanlige/li-14b-v0.4
name: Open LLM Leaderboard
---
> [!TIP] This model is currently ranked #1 among the models up to 15B parameters and #50 among all models on the [Open LLM Leaderboard](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard).<
世纪开元智印互联科技集团股份有限公司创立于2001年3月9日,总部位于山东省济南市。历经20余年发展,世纪开元以技术创新为核心,实现互联网与传统印刷行业的深度融合,探索出了区别于传统印刷行业的新模式、新业态。
世纪开元主要从事定制化影像、商务印刷及包装印刷类产品的研发、设计、生产及销售,通过将互联网、数字化、自动化和智能化等新模式和新技术与包装印刷行业相结合的方式,使小批量个性化定制产品订单得以相对标准化、规模化生产,旨在满足个人消费者及各类企业用户的小批量定制化需求,为用户提供一站式场景化定制印刷服务,实现全流程智能制造,已成长为业内领先的“工业互联网”印刷企业。
在未来发展中,世纪开元将一如既往地加大技术研发投入,深度融合互联网、大数据、人工智能等新一代信息技术,注重专项技术人才的培养,积极引进数字化、智能化手段优化创新业务流程和实现用户体验的提升,并通过多维度的企业发展,带动行业协同发展,促进印刷行业新旧动能转换,开拓印刷行业发展新方向。
# merge
This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).
## Merge Details
### Merge Method
This model was merged using the [Model Stock](https://arxiv.org/abs/2403.19522) merge method using [Qwen/Qwen2.5-14B-Instruct](https://huggingface.co/Qwen/Qwen2.5-14B-Instruct) as a base.
### Models Merged
The following models were included in the merge:
* [Qwen/Qwen2.5-Coder-14B](https://huggingface.co/Qwen/Qwen2.5-Coder-14B)
* [deepseek-ai/DeepSeek-R1-Distill-Qwen-14B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-14B)
* [huihui-ai/DeepSeek-R1-Distill-Qwen-14B-abliterated-v2](https://huggingface.co/huihui-ai/DeepSeek-R1-Distill-Qwen-14B-abliterated-v2)
* [tanliboy/lambda-qwen2.5-14b-dpo-test](https://huggingface.co/tanliboy/lambda-qwen2.5-14b-dpo-test)
* [SicariusSicariiStuff/Impish_QWEN_14B-1M](https://huggingface.co/SicariusSicariiStuff/Impish_QWEN_14B-1M)
* [Qwen/Qwen2.5-14B](https://huggingface.co/Qwen/Qwen2.5-14B)
### Configuration
The following YAML configuration was used to produce this model:
```yaml
models:
- model: deepseek-ai/DeepSeek-R1-Distill-Qwen-14B #logic
- model: huihui-ai/DeepSeek-R1-Distill-Qwen-14B-abliterated-v2 #uncensored
- model: Qwen/Qwen2.5-14B #text generation
- model: Qwen/Qwen2.5-14B-Instruct #chat assistant
- model: Qwen/Qwen2.5-Coder-14B #coding
- model: SicariusSicariiStuff/Impish_QWEN_14B-1M #math
- model: tanliboy/lambda-qwen2.5-14b-dpo-test #dpo
merge_method: model_stock
base_model: Qwen/Qwen2.5-14B-Instruct
normalize: true
int8_mask: true
dtype: bfloat16
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/wanlige__li-14b-v0.4-details)
| Metric |Value|
|-------------------|----:|
|Avg. |43.66|
|IFEval (0-Shot) |81.33|
|BBH (3-Shot) |50.38|
|MATH Lvl 5 (4-Shot)|55.74|
|GPQA (0-shot) |11.86|
|MuSR (0-shot) |16.35|
|MMLU-PRO (5-shot) |46.30|
|