{
  "_name_or_path": "tasksource/deberta-small-long-nli",
  "architectures": [
    "DebertaV2ForSequenceClassification"
  ],
  "attention_probs_dropout_prob": 0.1,
  "classifiers_size": [
    3,
    2,
    2,
    2,
    2,
    2,
    1,
    2,
    3,
    2,
    2,
    2,
    3,
    3,
    3,
    3,
    1,
    3,
    3,
    2,
    2,
    3,
    2,
    6,
    2,
    2,
    2,
    2,
    2,
    2,
    2,
    2,
    2,
    3,
    3,
    3,
    3,
    3,
    3,
    3,
    2,
    2,
    2,
    2,
    5,
    3,
    3,
    3,
    3,
    3,
    3,
    3,
    3,
    2,
    2,
    2,
    3,
    3,
    3,
    3,
    3,
    3,
    3,
    2,
    2,
    2,
    2,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    2,
    2,
    2,
    2,
    2,
    2,
    20,
    50,
    3,
    3,
    4,
    2,
    8,
    2,
    3,
    2,
    2,
    4,
    20,
    3,
    3,
    3,
    3,
    3,
    174,
    2,
    2,
    2,
    2,
    41,
    3,
    51,
    2,
    2,
    2,
    2,
    16,
    17,
    18,
    2,
    2,
    2,
    3,
    8,
    3,
    7,
    7,
    11,
    3,
    3,
    42,
    12,
    4,
    100,
    13,
    100,
    8,
    1,
    20,
    2,
    2,
    4,
    5,
    3,
    4,
    14,
    2,
    6,
    4,
    2,
    1,
    3,
    10,
    3,
    10,
    4,
    2,
    7,
    6,
    28,
    3,
    6,
    5,
    7,
    4,
    6,
    3,
    2,
    2,
    2,
    6,
    2,
    7,
    20,
    2,
    2,
    4,
    2,
    9,
    13,
    4,
    2,
    3,
    2,
    3,
    2,
    2,
    2,
    2,
    4,
    1,
    2,
    1,
    2,
    49,
    40,
    10,
    4,
    1,
    2,
    2,
    1,
    5,
    2,
    3,
    2,
    2,
    12,
    3,
    3,
    2,
    19,
    3,
    1,
    2,
    2,
    2,
    2,
    2,
    1,
    2,
    2,
    1,
    1,
    2,
    3,
    2,
    1,
    4,
    3,
    1,
    1,
    1,
    2,
    3,
    2,
    3,
    1,
    1,
    2,
    1,
    2,
    2,
    2,
    2,
    3,
    2,
    2,
    2,
    1,
    3,
    2,
    2,
    1,
    1,
    1,
    1,
    2,
    1,
    1,
    1,
    1,
    4,
    1,
    1,
    1,
    1,
    3,
    1,
    3,
    1,
    2,
    2,
    1,
    2,
    3,
    3,
    2,
    1,
    3,
    1,
    1,
    3,
    1,
    3,
    2,
    1,
    1,
    1,
    2,
    2,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    2,
    2,
    2,
    2,
    77,
    3,
    2,
    2,
    1,
    1,
    2,
    3,
    18,
    13,
    2,
    2,
    2,
    2,
    2,
    4,
    2,
    24,
    3,
    2,
    2,
    1,
    2,
    2,
    3,
    1,
    2,
    3,
    2,
    3,
    3,
    2,
    2,
    4,
    1,
    17,
    3,
    3,
    2,
    3,
    2,
    3,
    3,
    2,
    1,
    1,
    3,
    2,
    9,
    2,
    1,
    1,
    1,
    1,
    1,
    2,
    2,
    3,
    2,
    3,
    4,
    3,
    3,
    2,
    1,
    1,
    2,
    1,
    1,
    6,
    2,
    3,
    3,
    1,
    1,
    2,
    2,
    10,
    2,
    2,
    2,
    5,
    5,
    5,
    5,
    5,
    5,
    5,
    5,
    5,
    5,
    4,
    1,
    7,
    6,
    6,
    6,
    6,
    6,
    6,
    3,
    2,
    1,
    2,
    2,
    2,
    3,
    3,
    3,
    1
  ],
  "hidden_act": "gelu",
  "hidden_dropout_prob": 0.1,
  "hidden_size": 768,
  "id2label": {
    "0": "gender_bias",
    "1": "racial_bias"
  },
  "initializer_range": 0.02,
  "intermediate_size": 3072,
  "label2id": {
    "gender_bias": 1,
    "racial_bias": 0
  },
  "layer_norm_eps": 1e-07,
  "max_position_embeddings": 1680,
  "max_relative_positions": -1,
  "model_type": "deberta-v2",
  "norm_rel_ebd": "layer_norm",
  "num_attention_heads": 12,
  "num_hidden_layers": 6,
  "pad_token_id": 0,
  "pooler_dropout": 0,
  "pooler_hidden_act": "gelu",
  "pooler_hidden_size": 768,
  "pos_att_type": [
    "p2c",
    "c2p"
  ],
  "position_biased_input": false,
  "position_buckets": 256,
  "problem_type": "multi_label_classification",
  "relative_attention": true,
  "share_att_key": true,
  "tasks": [
    "glue/mnli",
    "glue/qnli",
    "glue/rte",
    "glue/wnli",
    "glue/mrpc",
    "glue/qqp",
    "glue/stsb",
    "super_glue/boolq",
    "super_glue/cb",
    "super_glue/multirc",
    "super_glue/wic",
    "super_glue/axg",
    "anli/a1",
    "anli/a2",
    "anli/a3",
    "sick/label",
    "sick/relatedness",
    "sick/entailment_AB",
    "snli",
    "scitail/snli_format",
    "hans",
    "WANLI",
    "recast/recast_ner",
    "recast/recast_kg_relations",
    "recast/recast_puns",
    "recast/recast_verbcorner",
    "recast/recast_sentiment",
    "recast/recast_verbnet",
    "recast/recast_factuality",
    "recast/recast_megaveridicality",
    "probability_words_nli/reasoning_2hop",
    "probability_words_nli/reasoning_1hop",
    "probability_words_nli/usnli",
    "nan-nli",
    "nli_fever",
    "breaking_nli",
    "conj_nli",
    "fracas",
    "dialogue_nli",
    "mpe",
    "dnc",
    "recast_white/fnplus",
    "recast_white/sprl",
    "recast_white/dpr",
    "joci",
    "robust_nli/IS_CS",
    "robust_nli/LI_LI",
    "robust_nli/ST_WO",
    "robust_nli/PI_SP",
    "robust_nli/PI_CD",
    "robust_nli/ST_SE",
    "robust_nli/ST_NE",
    "robust_nli/ST_LM",
    "robust_nli_is_sd",
    "robust_nli_li_ts",
    "add_one_rte",
    "imppres/implicature_quantifiers/log",
    "imppres/implicature_numerals_2_3/log",
    "imppres/implicature_gradable_adjective/log",
    "imppres/implicature_connectives/log",
    "imppres/implicature_modals/log",
    "imppres/implicature_numerals_10_100/log",
    "imppres/implicature_gradable_verb/log",
    "hlgd",
    "paws/labeled_final",
    "paws/labeled_swap",
    "medical_questions_pairs",
    "model-written-evals",
    "truthful_qa/multiple_choice",
    "fig-qa",
    "bigbench/bbq_lite_json",
    "bigbench/english_proverbs",
    "bigbench/figure_of_speech_detection",
    "bigbench/emoji_movie",
    "bigbench/date_understanding",
    "bigbench/metaphor_understanding",
    "bigbench/logical_fallacy_detection",
    "bigbench/analogical_similarity",
    "bigbench/mnist_ascii",
    "bigbench/elementary_math_qa",
    "bigbench/snarks",
    "bigbench/social_support",
    "bigbench/logical_deduction",
    "bigbench/emojis_emotion_prediction",
    "bigbench/sports_understanding",
    "bigbench/cifar10_classification",
    "bigbench/tracking_shuffled_objects",
    "bigbench/physics",
    "bigbench/mathematical_induction",
    "bigbench/movie_dialog_same_or_different",
    "bigbench/goal_step_wikihow",
    "bigbench/strategyqa",
    "bigbench/identify_math_theorems",
    "bigbench/gre_reading_comprehension",
    "bigbench/novel_concepts",
    "bigbench/conceptual_combinations",
    "bigbench/hyperbaton",
    "bigbench/strange_stories",
    "bigbench/contextual_parametric_knowledge_conflicts",
    "bigbench/implicatures",
    "bigbench/penguins_in_a_table",
    "bigbench/logical_sequence",
    "bigbench/simple_ethical_questions",
    "bigbench/dyck_languages",
    "bigbench/geometric_shapes",
    "bigbench/irony_identification",
    "bigbench/intent_recognition",
    "bigbench/logical_args",
    "bigbench/known_unknowns",
    "bigbench/formal_fallacies_syllogisms_negation",
    "bigbench/suicide_risk",
    "bigbench/crash_blossom",
    "bigbench/logic_grid_puzzle",
    "bigbench/analytic_entailment",
    "bigbench/dark_humor_detection",
    "bigbench/timedial",
    "bigbench/presuppositions_as_nli",
    "bigbench/arithmetic",
    "bigbench/implicit_relations",
    "bigbench/understanding_fables",
    "bigbench/salient_translation_error_detection",
    "bigbench/anachronisms",
    "bigbench/moral_permissibility",
    "bigbench/abstract_narrative_understanding",
    "bigbench/misconceptions",
    "bigbench/nonsense_words_grammar",
    "bigbench/code_line_description",
    "bigbench/sentence_ambiguity",
    "bigbench/disambiguation_qa",
    "bigbench/crass_ai",
    "bigbench/similarities_abstraction",
    "bigbench/authorship_verification",
    "bigbench/phrase_relatedness",
    "bigbench/color",
    "bigbench/hhh_alignment",
    "bigbench/metaphor_boolean",
    "bigbench/fantasy_reasoning",
    "bigbench/ruin_names",
    "bigbench/cause_and_effect",
    "bigbench/temporal_sequences",
    "bigbench/navigate",
    "bigbench/symbol_interpretation",
    "bigbench/key_value_maps",
    "bigbench/entailed_polarity",
    "bigbench/riddle_sense",
    "bigbench/discourse_marker_prediction",
    "bigbench/reasoning_about_colored_objects",
    "bigbench/empirical_judgments",
    "bigbench/fact_checker",
    "bigbench/movie_recommendation",
    "bigbench/checkmate_in_one",
    "bigbench/epistemic_reasoning",
    "bigbench/vitaminc_fact_verification",
    "bigbench/general_knowledge",
    "bigbench/identify_odd_metaphor",
    "bigbench/physical_intuition",
    "bigbench/winowhy",
    "bigbench/cs_algorithms",
    "bigbench/undo_permutation",
    "bigbench/evaluating_information_essentiality",
    "bigbench/unit_interpretation",
    "bigbench/question_selection",
    "bigbench/international_phonetic_alphabet_nli",
    "bigbench/play_dialog_same_or_different",
    "bigbench/real_or_fake_text",
    "bigbench/human_organs_senses",
    "bigbench/hindu_knowledge",
    "bigbench/social_iqa",
    "bigbench/odd_one_out",
    "bigbench/causal_judgment",
    "cos_e/v1.0",
    "cosmos_qa",
    "dream",
    "openbookqa",
    "qasc",
    "quartz",
    "quail",
    "head_qa/en",
    "sciq",
    "social_i_qa",
    "wiki_hop/original",
    "wiqa",
    "piqa",
    "hellaswag",
    "super_glue/copa",
    "balanced-copa",
    "e-CARE",
    "art",
    "winogrande/winogrande_xl",
    "codah/codah",
    "ai2_arc/ARC-Easy/challenge",
    "ai2_arc/ARC-Challenge/challenge",
    "definite_pronoun_resolution",
    "swag/regular",
    "math_qa",
    "glue/cola",
    "glue/sst2",
    "utilitarianism",
    "amazon_counterfactual/en",
    "insincere-questions",
    "toxic_conversations",
    "TuringBench",
    "trec",
    "vitaminc",
    "hope_edi/english",
    "rumoureval_2019/RumourEval2019",
    "ethos/binary",
    "ethos/multilabel",
    "tweet_eval/offensive",
    "tweet_eval/sentiment",
    "tweet_eval/irony",
    "tweet_eval/hate",
    "tweet_eval/emotion",
    "tweet_eval/emoji",
    "tweet_eval/stance_abortion",
    "tweet_eval/stance_atheism",
    "tweet_eval/stance_climate",
    "tweet_eval/stance_feminist",
    "tweet_eval/stance_hillary",
    "discovery/discovery",
    "pragmeval/squinky-formality",
    "pragmeval/emobank-arousal",
    "pragmeval/squinky-implicature",
    "pragmeval/squinky-informativeness",
    "pragmeval/switchboard",
    "pragmeval/verifiability",
    "pragmeval/mrda",
    "pragmeval/emobank-valence",
    "pragmeval/emobank-dominance",
    "pragmeval/persuasiveness-strength",
    "pragmeval/persuasiveness-relevance",
    "pragmeval/pdtb",
    "pragmeval/gum",
    "pragmeval/stac",
    "pragmeval/persuasiveness-specificity",
    "pragmeval/sarcasm",
    "pragmeval/persuasiveness-eloquence",
    "pragmeval/emergent",
    "pragmeval/persuasiveness-premisetype",
    "pragmeval/persuasiveness-claimtype",
    "silicone/meld_e",
    "silicone/dyda_e",
    "silicone/iemocap",
    "silicone/sem",
    "silicone/meld_s",
    "silicone/oasis",
    "silicone/maptask",
    "silicone/dyda_da",
    "lex_glue/eurlex",
    "lex_glue/scotus",
    "lex_glue/ledgar",
    "lex_glue/unfair_tos",
    "lex_glue/case_hold",
    "language-identification",
    "imdb",
    "rotten_tomatoes",
    "ag_news",
    "yelp_review_full/yelp_review_full",
    "financial_phrasebank/sentences_allagree",
    "poem_sentiment",
    "dbpedia_14/dbpedia_14",
    "amazon_polarity/amazon_polarity",
    "app_reviews",
    "hate_speech18",
    "sms_spam",
    "humicroedit/subtask-1",
    "humicroedit/subtask-2",
    "snips_built_in_intents",
    "hate_speech_offensive",
    "yahoo_answers_topics",
    "stackoverflow-questions",
    "hyperpartisan_news",
    "sciie",
    "citation_intent",
    "go_emotions/simplified",
    "scicite",
    "liar",
    "lexical_relation_classification/CogALexV",
    "lexical_relation_classification/EVALution",
    "lexical_relation_classification/K&H+N",
    "lexical_relation_classification/BLESS",
    "lexical_relation_classification/ROOT09",
    "linguisticprobing/obj_number",
    "linguisticprobing/bigram_shift",
    "linguisticprobing/subj_number",
    "linguisticprobing/sentence_length",
    "linguisticprobing/odd_man_out",
    "linguisticprobing/tree_depth",
    "linguisticprobing/top_constituents",
    "linguisticprobing/coordination_inversion",
    "linguisticprobing/past_present",
    "crowdflower/sentiment_nuclear_power",
    "crowdflower/tweet_global_warming",
    "crowdflower/political-media-message",
    "crowdflower/text_emotion",
    "crowdflower/corporate-messaging",
    "crowdflower/political-media-audience",
    "crowdflower/airline-sentiment",
    "crowdflower/political-media-bias",
    "crowdflower/economic-news",
    "ethics/commonsense",
    "ethics/deontology",
    "ethics/justice",
    "ethics/virtue",
    "emo/emo2019",
    "google_wellformed_query",
    "tweets_hate_speech_detection",
    "has_part",
    "blog_authorship_corpus/gender",
    "blog_authorship_corpus/age",
    "blog_authorship_corpus/job",
    "open_question_type",
    "health_fact",
    "commonsense_qa",
    "mc_taco",
    "ade_corpus_v2/Ade_corpus_v2_classification",
    "discosense",
    "circa",
    "phrase_similarity",
    "scientific-exaggeration-detection",
    "quarel",
    "fever-evidence-related",
    "numer_sense",
    "dynasent/dynabench.dynasent.r1.all/r1",
    "dynasent/dynabench.dynasent.r2.all/r2",
    "Sarcasm_News_Headline",
    "sem_eval_2010_task_8",
    "auditor_review",
    "medmcqa",
    "Dynasent_Disagreement",
    "Politeness_Disagreement",
    "SBIC_Disagreement",
    "SChem_Disagreement",
    "Dilemmas_Disagreement",
    "logiqa",
    "wiki_qa",
    "cycic_classification",
    "cycic_multiplechoice",
    "sts-companion",
    "commonsense_qa_2.0",
    "lingnli",
    "monotonicity-entailment",
    "arct",
    "scinli",
    "naturallogic",
    "onestop_qa",
    "moral_stories/full",
    "prost",
    "dynahate",
    "syntactic-augmentation-nli",
    "autotnli",
    "CONDAQA",
    "webgpt_comparisons",
    "synthetic-instruct-gptj-pairwise",
    "scruples",
    "wouldyourather",
    "defeasible-nli/atomic",
    "defeasible-nli/snli",
    "help-nli",
    "nli-veridicality-transitivity",
    "lonli",
    "dadc-limit-nli",
    "FLUTE",
    "strategy-qa",
    "summarize_from_feedback/comparisons",
    "folio",
    "tomi-nli",
    "avicenna",
    "SHP",
    "MedQA-USMLE-4-options-hf",
    "wikimedqa/medwiki",
    "cicero",
    "CREAK",
    "mutual",
    "NeQA",
    "quote-repetition",
    "redefine-math",
    "puzzte",
    "implicatures",
    "race/middle",
    "race/high",
    "race-c",
    "spartqa-yn",
    "spartqa-mchoice",
    "temporal-nli",
    "riddle_sense",
    "clcd-english",
    "twentyquestions",
    "reclor",
    "counterfactually-augmented-imdb",
    "counterfactually-augmented-snli",
    "cnli",
    "boolq-natural-perturbations",
    "acceptability-prediction",
    "equate",
    "ScienceQA_text_only",
    "ekar_english",
    "implicit-hate-stg1",
    "chaos-mnli-ambiguity",
    "headline_cause/en_simple",
    "logiqa-2.0-nli",
    "oasst2_dense_flat/quality",
    "oasst2_dense_flat/toxicity",
    "oasst2_dense_flat/helpfulness",
    "mindgames",
    "ambient",
    "path-naturalness-prediction",
    "civil_comments/toxicity",
    "civil_comments/severe_toxicity",
    "civil_comments/obscene",
    "civil_comments/threat",
    "civil_comments/insult",
    "civil_comments/identity_attack",
    "civil_comments/sexual_explicit",
    "cloth",
    "dgen",
    "I2D2",
    "args_me",
    "Touche23-ValueEval",
    "starcon",
    "banking77",
    "ConTRoL-nli",
    "tracie",
    "sherliic",
    "sen-making/1",
    "sen-making/2",
    "winowhy",
    "robustLR",
    "v1/gen_train234_test2to10",
    "logical-fallacy",
    "parade",
    "cladder",
    "subjectivity",
    "MOH",
    "VUAC",
    "sharc_modified/mod",
    "conceptrules_v2",
    "disrpt/eng.dep.scidtb.rels",
    "zero-shot-label-nli",
    "com2sense",
    "scone",
    "winodict",
    "fool-me-twice",
    "monli",
    "corr2cause",
    "lsat_qa/all",
    "apt",
    "twitter-financial-news-sentiment",
    "icl-symbol-tuning-instruct",
    "SpaceNLI",
    "propsegment/nli",
    "HatemojiBuild",
    "regset",
    "esci",
    "chatbot_arena_conversations",
    "dnd_style_intents",
    "FLD.v2/default",
    "FLD.v2/star",
    "SDOH-NLI",
    "scifact_entailment",
    "feasibilityQA",
    "simple_pair",
    "AdjectiveScaleProbe-nli",
    "resnli",
    "SpaRTUN",
    "ReSQ",
    "semantic_fragments_nli",
    "dataset_train_nli",
    "stepgame",
    "nlgraph",
    "oasst2_pairwise_rlhf_reward",
    "hh-rlhf/helpful-base",
    "hh-rlhf/helpful-online",
    "hh-rlhf/helpful-rejection-sampled",
    "hh-rlhf/harmless-base",
    "ruletaker",
    "PARARULE-Plus",
    "proofwriter",
    "logical-entailment",
    "nope",
    "LogicNLI",
    "contract-nli/contractnli_a/seg",
    "contract-nli/contractnli_b/full",
    "nli4ct_semeval2024",
    "lsat-ar",
    "lsat-rc",
    "biosift-nli",
    "brainteasers/WP",
    "brainteasers/SP",
    "persuasion",
    "AmbigNQ-clarifying-question",
    "SIGA-nli",
    "FOL-nli",
    "goal-step-wikihow/order",
    "PARADISE",
    "doc-nli",
    "mctest-nli",
    "patent-phrase-similarity",
    "natural-language-satisfiability",
    "idioms-nli",
    "lifecycle-entailment",
    "HelpSteer/helpfulness",
    "HelpSteer/correctness",
    "HelpSteer/coherence",
    "HelpSteer/complexity",
    "HelpSteer/verbosity",
    "HelpSteer2/helpfulness",
    "HelpSteer2/correctness",
    "HelpSteer2/coherence",
    "HelpSteer2/complexity",
    "HelpSteer2/verbosity",
    "MSciNLI",
    "UltraFeedback-paired",
    "AES2-essay-scoring",
    "english-grading/cohesion",
    "english-grading/syntax",
    "english-grading/vocabulary",
    "english-grading/phraseology",
    "english-grading/grammar",
    "english-grading/conventions",
    "wice",
    "hover",
    "tasksource_dpo_pairs",
    "seahorse_summarization_evaluation",
    "missing-item-prediction/contrastive",
    "babi_nli",
    "gen_debiased_nli",
    "imppres/presupposition",
    "/prag",
    "blimp-2"
  ],
  "torch_dtype": "float32",
  "transformers_version": "4.46.2",
  "type_vocab_size": 0,
  "vocab_size": 128100
}