File size: 7,513 Bytes
7a04471
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
---
language:
- en
license: apache-2.0
library_name: transformers
tags:
- mergekit
- merge
base_model: Nohobby/MS3-Tantum-24B-v0.1
quantized_by: waldie
---
***
## Tantum

>Everything is edible if you are brave enough

![Так и живём](https://files.catbox.moe/ergq6n.png)

### Overview

It's kind of hard to judge a 24B model after using a 70B for a while. From some tests, I think it might be better than my ms-22B and qwen-32B merges.

It has some prose, some character adherence, and... `<think>` tags! It will consistently think if you add `<think>` tag as prefill, tho I think it will obviously not think as well as an actual thinking model distill.

**Settings:**

Samplers: [Weird preset](https://files.catbox.moe/ccwmca.json) | [Mullein preset](https://files.catbox.moe/0pkv2j.json)

Prompt format: Mistral-V7 (?)

ChatML and Llama3 give better results imo. In the case of ChatML, there are Dans-PersonalityEngine and Redemption-Wind models that have been trained on it. But Llama3? No clue.

I use [this](https://files.catbox.moe/daluze.json) lorebook for all chats instead of a system prompt for mistal models.

### Quants

[Static](https://huggingface.co/mradermacher/MS3-Tantum-24B-v0.1-GGUF) | [Imatrix](https://huggingface.co/mradermacher/MS3-Tantum-24B-v0.1-i1-GGUF)

***

## Merge Details
### Merging steps

## MS3-test-Merge-1

```yaml
models:
  - model: unsloth/Mistral-Small-24B-Base-2501
  - model: unsloth/Mistral-Small-24B-Instruct-2501+ToastyPigeon/new-ms-rp-test-ws
    parameters:
        select_topk:
          - value: [0.05, 0.03, 0.02, 0.02, 0.01]
  - model: unsloth/Mistral-Small-24B-Instruct-2501+estrogen/MS2501-24b-Ink-ep2-adpt
    parameters:
        select_topk: 0.1
  - model: trashpanda-org/MS-24B-Instruct-Mullein-v0
    parameters:
        select_topk: 0.4
base_model: unsloth/Mistral-Small-24B-Base-2501
merge_method: sce
parameters:
  int8_mask: true
  rescale: true
  normalize: true
dtype: bfloat16
tokenizer_source: base
```

```yaml
dtype: bfloat16
tokenizer_source: base
merge_method: della_linear
parameters:
  density: 0.55
base_model: Step1
models:
  - model: unsloth/Mistral-Small-24B-Instruct-2501
    parameters:
      weight:
        - filter: v_proj
          value: [0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0]
        - filter: o_proj
          value: [1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1]
        - filter: up_proj
          value: [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
        - filter: gate_proj
          value: [0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0]
        - filter: down_proj
          value: [1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0]
        - value: 0
  - model: Step1
    parameters:
      weight:
        - filter: v_proj
          value: [1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1]
        - filter: o_proj
          value: [0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0]
        - filter: up_proj
          value: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
        - filter: gate_proj
          value: [1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1]
        - filter: down_proj
          value: [0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1]
        - value: 1

```

Some early MS3 merge. Not really worth using on its own. Just added it for fun.

## RP-half1

```yaml
models:
  - model: ArliAI/Mistral-Small-24B-ArliAI-RPMax-v1.4
    parameters:
      weight: 0.2
      density: 0.7
  - model: trashpanda-org/Llama3-24B-Mullein-v1
    parameters:
      weight: 0.2
      density: 0.7
  - model: TheDrummer/Cydonia-24B-v2
    parameters:
      weight: 0.2
      density: 0.7
merge_method: della_linear
base_model: Nohobby/MS3-test-Merge-1
parameters:
  epsilon: 0.2
  lambda: 1.1
dtype: bfloat16
tokenizer:
 source: base
```

## RP-half2

```yaml
base_model: Nohobby/MS3-test-Merge-1
parameters:
  epsilon: 0.05
  lambda: 0.9
  int8_mask: true
  rescale: true
  normalize: false
dtype: bfloat16
tokenizer:
 source: base
merge_method: della
models:
  - model: estrogen/MS2501-24b-Ink-apollo-ep2
    parameters:
      weight: [0.1, -0.01, 0.1, -0.02, 0.1]
      density: [0.6, 0.4, 0.5, 0.4, 0.6]
  - model: huihui-ai/Mistral-Small-24B-Instruct-2501-abliterated
    parameters:
      weight: [0.02, -0.01, 0.02, -0.02, 0.01]
      density: [0.45, 0.55, 0.45, 0.55, 0.45]
  - model: ToastyPigeon/ms3-roselily-rp-v2
    parameters:
      weight: [0.01, -0.02, 0.02, -0.025, 0.01]
      density: [0.45, 0.65, 0.45, 0.65, 0.45]
  - model: PocketDoc/Dans-DangerousWinds-V1.1.1-24b
    parameters:
      weight: [0.1, -0.01, 0.1, -0.02, 0.1]
      density: [0.6, 0.4, 0.5, 0.4, 0.6]
```

## RP-whole

```yaml
base_model: ReadyArt/Forgotten-Safeword-24B-V2.2
merge_method: model_stock
dtype: bfloat16
models:
  - model: mergekit-community/MS3-RP-half1
  - model: mergekit-community/MS3-RP-RP-half2
```

## INT

```yaml
merge_method: della_linear
dtype: bfloat16
parameters:
  normalize: true
  int8_mask: true
tokenizer:
 source: base
base_model: PocketDoc/Dans-PersonalityEngine-V1.2.0-24b
models:
    - model: PocketDoc/Dans-PersonalityEngine-V1.2.0-24b
      parameters:
        density: 0.55
        weight: 1
    - model: Undi95/MistralThinker-e2
      parameters:
        density: 0.55
        weight: 1
    - model: d-rang-d/ignore_MS3-Reasoner-mergekit
      parameters:
        density: 0.55
        weight: 1
    - model: arcee-ai/Arcee-Blitz
      parameters:
        density: 0.55
        weight: 1
```

## Tantumv00

```yaml
output_base_model: "SicariusSicariiStuff/Redemption_Wind_24B"
output_dtype: "bfloat16"
finetune_merge:
  - { "model": "mergekit-community/MS3-INT", "base": "unsloth/Mistral-Small-24B-Instruct-2501", "alpha": 1.0, "is_input": true }
  - { "model": "mergekit-community/MS-RP-whole", "base": "unsloth/Mistral-Small-24B-Instruct-2501", "alpha": 0.7, "is_output": true }
output_dir: "output_model"
device: "cpu"
clean_cache: false
cache_dir: "cache"
storage_dir: "storage"
```

Doesn't look like a mergekit recipe, right? Well, it's not. It's for a standalone merge tool: https://github.com/54rt1n/shardmerge

If you want to use it for something non-qwen you can replace index.py with [this](https://files.catbox.moe/bgxmuz.py) and writer.py with [that](https://files.catbox.moe/ewww39.py). A much better solution is possible, ofc, but I'm a dumdum and can't code. The creator knows about this issue and will fix it... Someday, I guess.

You also need to know that this thing is *really* slow, and it took me 5 hours to cram 3 24B models together.

## Tantumv01

```yaml
dtype: bfloat16
tokenizer:
 source: unsloth/Mistral-Small-24B-Instruct-2501
merge_method: della_linear
parameters:
  density: 0.55
base_model: d-rang-d/MS3-megamerge
models:
  - model: unsloth/Mistral-Small-24B-Instruct-2501
    parameters:
      weight:
        - filter: v_proj
          value: [0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0]
        - filter: o_proj
          value: [1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1]
        - filter: up_proj
          value: [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
        - filter: gate_proj
          value: [0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0]
        - filter: down_proj
          value: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
        - value: 0
  - model: d-rang-d/MS3-megamerge
    parameters:
      weight:
        - filter: v_proj
          value: [1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1]
        - filter: o_proj
          value: [0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0]
        - filter: up_proj
          value: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
        - filter: gate_proj
          value: [1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1]
        - filter: down_proj
          value: [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
        - value: 1
```