--- language: - ja license: apache-2.0 tags: - audio - automatic-speech-recognition - speech datasets: - Japanese accent datasets metrics: - wer # Optional. Add this if you want to encode your eval results in a structured way. model-index: - name: Wav2vec2 Accent Japanese results: - task: type: Speech Recognition # Required. Example: automatic-speech-recognition name: automatic-speech-recognition # Optional. Example: Speech Recognition dataset: type: accent_voice name: Japanese accent datasets args: ja metrics: - type: wer # Required. value: 15.82 # Required. name: Test WER --- # Wav2Vec2 Accent Japanese Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Japanese accent dataset When using this model, make sure that your speech input is sampled at 16kHz. ## Test Result WER: 15.82%