Upload PPO BipedalWalker-v3 trained agent
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-bipedal-walker-v3.zip +3 -0
- ppo-bipedal-walker-v3/_stable_baselines3_version +1 -0
- ppo-bipedal-walker-v3/data +99 -0
- ppo-bipedal-walker-v3/policy.optimizer.pth +3 -0
- ppo-bipedal-walker-v3/policy.pth +3 -0
- ppo-bipedal-walker-v3/pytorch_variables.pth +3 -0
- ppo-bipedal-walker-v3/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- BipedalWalker-v3
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 302.93 +/- 0.82
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: BipedalWalker-v3
|
20 |
+
type: BipedalWalker-v3
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **BipedalWalker-v3**
|
24 |
+
This is a trained model of a **PPO** agent playing **BipedalWalker-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7adf8d5dd0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7adf8d5e60>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7adf8d5ef0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7adf8d5f80>", "_build": "<function ActorCriticPolicy._build at 0x7f7adf8db050>", "forward": "<function ActorCriticPolicy.forward at 0x7f7adf8db0e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7adf8db170>", "_predict": "<function ActorCriticPolicy._predict at 0x7f7adf8db200>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7adf8db290>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7adf8db320>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7adf8db3b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f7adf8a5720>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVPwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLGIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWYAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UaApLGIWUjAFDlHSUUpSMBGhpZ2iUaBIolmAAAAAAAAAAAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgKSxiFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLGIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoIUsYhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [24], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVdwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/lGgKSwSFlIwBQ5R0lFKUjARoaWdolGgSKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaApLBIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYEAAAAAAAAAAEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYEAAAAAAAAAAEBAQGUaCFLBIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_np_random": null}, "n_envs": 32, "num_timesteps": 1048576, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652372277.0956016, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQwAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYADAAAAAAAAMwX9j2sOmU8yebKPtlJErxhI0C+AgCAP6g4A78BAIC/AAAAAN2ziT+Bf1A+EiGCPpCoQr8AAAAACQagPkKjoT4rIqc+VFKxPl4Twz7yZt0+t/0AP/LLHT+t0VM/AACAP3qHmj5juZ+6CL7NPu+FBT2FlRm/AwCAP4Ab7L0BAIC/AAAAAIgUij+UzxK+JFUlPv3/fz8AAAAAQviOPjlpjj5LY5I+DP2aPpZ1qj4NnMI+eD7pPsdsFT8VyFA/AACAP0HFCD6d4Pg8ABrIPoiBWL3iq2U+/yXcvjxCOr9VvX65AACAP4IOjj8AAICy/O/mPgMAgL8AAAAAQ7WhPmKXoz5wWKk+Yzq0PqQZxT6I+t4+znMDP/fOIT9hW1o/AACAP4omPD5+kYs8W4e/Pj+DNDww2ba+AQCAP8R0zr4AAIC/AAAAABRejT9ZuaO+hoOIPv//fz8AAAAANLmaPimunT74vqM+rMCtPmuLvD4NHtQ+/9v5Pj8dGz8SQEk/AACAP8iXfT74Lgu9J+P/PvWUiz1Gtw+/MQdSvwD0hbtXSYA/AAAAACQXjj8AAF83lvIVP3j0f78AAAAAE3OYPkkumj7dZJ8+HsqoPldctz5k2c0+c6TwPrOCFT8ST0U/AACAPz8O3j0GrI46WwQPP9AAD71pPYW+3vqFv4SroL71HDY/AACAP6pEkT8AAAAAlmI1P31FrD4AAAAA//6ePj7NoD4D7qY+srGyPg4dxj7mTeI+a2kGP3VCIz+gjFM/AACAP8OMRj6lS0i8p9ybPnSajb3MzpM9XYbKvgDZIr/9Aso9AACAPw8qlz/8/38/1NLWvgklgb8AAIA/EKOePia7oD5slqY+WuqwPpYsvz5ej9c+cCcCP5pIJT84+mU/AACAP7yuCT7lk4w8oGqmu240aL5NDlg++/9/PxST4b4VkYW/AACAP7imjj8SaIS+dA5tPwAAgLMAAAAAU3i5PomTuz4bJMI+uvnNPoG44D5qe/0+aS8VPxtgOj8AAIA/AACAP0ajTz7/ajo9SM+MPmMbaD20uSy+/P9/P5Bq2L4sJIO/AACAP4DdkD8AAAAAjGIjPv//f78AAAAAUWCVPi5tlj4ZXJo+AqWiPkVysT68HcY+bbfpPj29GT8+X1k/AACAP42dfD4mJg09aVu6PgWfKD3r9BG/KZl/P8A+ML3E/X+/AAAAAFhVkT8A4Ak4gFatPcnoLr8AAIA/A0eUPnXvlT7nOpo+QnmiPm9urz4v8cI+s2zgPqVzCT9Gkjo/AACAP6I0MT5Ez7K8HtD0PqpIYrz7J9e+l0pDv4DfP7455zM/AACAP/E/jz8AAF02dJcFP2v8f78AAAAAbqKUPjRflj7qmZs+ZtalPpbMtT7Vysw+AEbxPtTPGj/MN1s/AACAPxKBDz4s6U69qL8LP6Y2PL3smb2+B6Ukv/x0g76EGiw/AAAAAFR5lj/+/38/QlZvPyQBSb8AAAAA33WYPj8Smz5teKE+snisPkWRuz6Ko9E+4nbyPt2TEj+92UE/AACAP2FUgz5q49O63sjCPhEwdb2w+L6+BACAP1hA274BAIC/AAAAANGPkD8AADCymvXHPvv/fz8AAAAAMsOQPmhakz51LZg+6sKgPtdyrz449MU+5I/pPsHsED88VEI/AACAP1IcaD4jous6sY//PvZyX71bzLG+ytVtv+g/yb7KRBI/AACAP/QFjT8AAAAARgzaPnmSbL8AAAAACtiQPs29kT4KbpU+zducPgW7pz4lero+u1HbPl1OCj+yIkQ/AACAPwY2kD7gKBy9CdO/Ph3uhr3VuCy+u6ayvtg5Cr8cb8g+AACAP/ajjz9Sn78+slEfP///fz8AAAAACNSRPgVUkD4pe5M+E5aaPqZzqD498L0+vRjgPrWNDT+Bgko/AACAPw7ghD2TIQI8dWrZPpaXA73mkTQ+AQCAP/AUNb91Lmi/AACAP3txjD9azdW+0MkxvukGRL4AAIA/aFeiPuGEpz7LW7A+UJy9PhI3zz4WcOY+aGwGPyanHj9s00o/AACAP2hu+j1T9S269qACP/p57jxwD52+OgZ7v5jzhL4I9U8/AACAP1omjz8AAAAA+2cvP/v/f78AAAAA4ImdPl8toT6ZCak+0z22Prh2xz6zb98+Bq8CPwBPHj9VHFg/AACAP0eeCT5SXMe8aYcGP5FOWD2yxd6+dJZsvwBV1LwNk4A/AAAAAKVEkT8AwM03aAwEP2N9L78AAAAAphiVPj2ulj4nAJw+QumlPugutT7wgc0+lrr2Pq11Gz/Dcmk/AACAPyXRpL0/o229vFfZPhKnajs44bK+nbk5PyDzXj3//3+/AAAAAOUDkD8AAAAAPHXMPv3/f78AAAAA/CGfPmjYoz58Wq0+1YK8PnE60z5Fw/I+f7kOP7c/LT9xa2s/AACAP0vfTT4O3XI8R20DP/cT7DwOVY6+veeLv7Cdib5w1UE/AACAP88ajj/s11c+HN0xP03ckr0AAAAA0QOlPpY3pT6M36k+w0K0Prh1xD5iNtw+CjQAP7gMHj87dFY/AACAP//daT4KQxC9xZ8CPyTDCD1/oBW/LJtbv6B/Nb0yIoA/AAAAALn0jT/52rs+KjkHP4dyDL0AAAAAXbOVPo09mD4DgZ4+4UupPmZLuD7aEs0+yvjrPqOzET/Wr0A/AACAP2xDmD6Bz3U9Bv2nPre/WD36AsS+0QydPiyH8L4D23+/AACAPzBIkD8AAEy2kIPXPewBgL8AAAAATzmPPnudjz5CNJM+FDaaPmO0pT6v3bo+EZTYPgK7Bz8yTDk/AACAPyMzTD6/Eva7yKoOPyV7lTxByh2/keSBv2BqhTwBAIA/AAAAAItHjD9XHFa+6qYvP///f78AAAAANEyYPvkGmj6uvZ8+TEGqPs/zuz7sBtc+BXD9PjKWGD+3JUA/AACAP7OwTT2pTm691VjtPgRMLL35dB+/MrQZv0RwQj6zHGU/AACAPzmrlz+R2H8/hr+VPhcFgL8AAIA/G/iOPmoPkj7olZg+nY6jPuCRtD6AK9A+/uj4Ph3gHT+VrVg/AACAP4BJAT45mgW9F7IKP8RpjrsHqxq/nntZvzgVVT79/38/AACAPy8RkT8AAAAAHSwpPwEAgL8AAAAAAWafPms1oT58l6c+m8SzPqLbxT7ztN8+33wDP1XHIz8qXXA/AACAPwxBIz5B5NS8Z5bJPgSh/7yGc7i9ICz+voTJ+r6kVa8+AACAPzRphj8R4z8+mAE0P/z/fz8AAAAArlqbPj8hnD4/oqA+O0CqPl2quT4AAtE+NCH1PiBOHD8lKFc/AACAP+wzNj46EAi9rhz5Pp/nEDurIk+/niM3v9bnwT4BAIA/AACAP586fj+VH5q+2jADP1xqGj8AAIA/Y1qgPoLJoj6Bc6c+2omvPl7/vD7LUNE+yqvxPpSVEj/Yr0Q/AACAP6uF1j3IutC9N2IAP7RjSL2fNRa/AscjP+hQ1z3//3+/AAAAAPjbjj8xbTc/iGHRPv//f78AAAAAck+VPl5glz6crJw+s+enPv1quj5KO9g+WvIAP201IT+/dFk/AACAP3sWcD5YyXe6lz8QPy5iqLxWRt++F5GJv+hAOb5DVU0/AACAPy2Jhz+Iui6/gt9QP///fz8AAAAAlteWPs+RmD76cp8+lSOrPrQjvT7OWNU+WuwDP1uhLD9t9mo/AACAPwX0jD5OdR29CtvmPuihX724ZwG//P9/P/iSpb7//3+/AAAAAKdEkT8AAAAACHTHPgns8j0AAAAA9fiZPj+/mz4f858+3q+oPukJuD5HP88+e0fzPiCAGj96pVQ/AACAP1ICKz1fVX69IkcJPxNLV70kIOq+FVEavwDzs71B1E0/AAAAAJfJkD9wHow/xhXrPgAAgL8AAIA/ANmSPrHSlT4EEZs+IHClPjIMuD6WFdI+H0b4PvBiGj9fF00/AACAP6l/7D1gddo5dKClPnICNr3Nhm69AwCAPwh4+r4AAIC/AAAAAHM0jz8AAAiyYPVePvv/fz8AAAAAMyGgPhDpoj6knKg+bda1Pjroyz71EPA+zagTPy3DOj8AAIA/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLIEsYhpSMAUOUdJRSlC4="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.04857599999999995, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIL2tigW+acUCUhpRSlIwBbJRN6ASMAXSUR0CpARXKr7wbdX2UKGgGaAloD0MIYoVbPtKJcUCUhpRSlGgVTfkEaBZHQKkCumVJL/V1fZQoaAZoCWgPQwg3GsBbIAtdwJSGlFKUaBVLU2gWR0CpA4WilBQfdX2UKGgGaAloD0MIniRdM/ldcUCUhpRSlGgVTSkFaBZHQKkFVOZ9d/t1fZQoaAZoCWgPQwiRCmMLgVZxQJSGlFKUaBVNIQVoFkdAqQWz0nPVu3V9lChoBmgJaA9DCDIAVHFjf3FAlIaUUpRoFU0IBWgWR0CpBgyrgflqdX2UKGgGaAloD0MIG4F4Xb8zXUCUhpRSlGgVTVEEaBZHQKkGLSofjjt1fZQoaAZoCWgPQwj+7h01JsRMwJSGlFKUaBVNBwFoFkdAqQY9qJuVHHV9lChoBmgJaA9DCLDIrx9ieHFAlIaUUpRoFU3sBGgWR0CpBqi4J/oadX2UKGgGaAloD0MIigESTeCScUCUhpRSlGgVTegEaBZHQKkHO9yLhrF1fZQoaAZoCWgPQwix9+KLdqZxQJSGlFKUaBVN6QRoFkdAqQmwxk/bCnV9lChoBmgJaA9DCKLRHcSOkXFAlIaUUpRoFU3lBGgWR0CpCkMNc4YKdX2UKGgGaAloD0MIMSb9vdRfcUCUhpRSlGgVTRoFaBZHQKkLvhuwX691fZQoaAZoCWgPQwig4c0avGtxQJSGlFKUaBVNMAVoFkdAqQ22ITGo73V9lChoBmgJaA9DCF5m2CgrbHFAlIaUUpRoFU0CBWgWR0CpDdIoE0SAdX2UKGgGaAloD0MIflGC/gJtcUCUhpRSlGgVTQ4FaBZHQKkOL9lVcUx1fZQoaAZoCWgPQwh8ZHPV/HxxQJSGlFKUaBVNCAVoFkdAqQ7bGvOhTXV9lChoBmgJaA9DCHtP5bTnd3FAlIaUUpRoFU0MBWgWR0CpYLsYl6Z6dX2UKGgGaAloD0MI2ClWDQK5cUCUhpRSlGgVTdMEaBZHQKlhxPVurIZ1fZQoaAZoCWgPQwit+lxtBbFxQJSGlFKUaBVN3wRoFkdAqWKFnyup0nV9lChoBmgJaA9DCH433bLDlHFAlIaUUpRoFU3fBGgWR0CpYrBfShJzdX2UKGgGaAloD0MI4xbzcwOmcUCUhpRSlGgVTeAEaBZHQKlisyKvV3F1fZQoaAZoCWgPQwiasP1kjGpxQJSGlFKUaBVNEgVoFkdAqWSWkDZDiXV9lChoBmgJaA9DCBCugEK9eXFAlIaUUpRoFU0FBWgWR0CpZnuBMBZIdX2UKGgGaAloD0MINUWA0/udcUCUhpRSlGgVTfoEaBZHQKlnEnLq2Sd1fZQoaAZoCWgPQwiAuKtXUZhxQJSGlFKUaBVN6QRoFkdAqWiWQEIPb3V9lChoBmgJaA9DCOY+OQqQVnFAlIaUUpRoFU0iBWgWR0Cpa95CngpCdX2UKGgGaAloD0MIbhYvFoZ7cUCUhpRSlGgVTQEFaBZHQKlr/Jaq0dB1fZQoaAZoCWgPQwj8cfvlk7dNQJSGlFKUaBVNCgNoFkdAqW7GRV6u4nV9lChoBmgJaA9DCOaw+47hZXFAlIaUUpRoFU0aBWgWR0CpbsbPIGQkdX2UKGgGaAloD0MIDW/W4P1dcUCUhpRSlGgVTRsFaBZHQKm/UBPKuCB1fZQoaAZoCWgPQwiWCb/Uz0xxQJSGlFKUaBVNMQVoFkdAqcBGEZiuuHV9lChoBmgJaA9DCEVlw5qKh3FAlIaUUpRoFU3uBGgWR0CpwNKSowVTdX2UKGgGaAloD0MImpMXmQBwcUCUhpRSlGgVTQwFaBZHQKnCcIUrTYx1fZQoaAZoCWgPQwhMUwQ4PZVxQJSGlFKUaBVN8gRoFkdAqcYVnIyTIXV9lChoBmgJaA9DCKK2DaMgkHFAlIaUUpRoFU3+BGgWR0Cpxzjlo11odX2UKGgGaAloD0MIoN/3bx6zcUCUhpRSlGgVTdIEaBZHQKnHwwUQCjl1fZQoaAZoCWgPQwiXxcTmI51xQJSGlFKUaBVN2wRoFkdAqchtr2xptnV9lChoBmgJaA9DCAgFpWglmnFAlIaUUpRoFU3xBGgWR0CpyWsDGLk0dX2UKGgGaAloD0MIVoDvNu90cUCUhpRSlGgVTQAFaBZHQKnJ/CfHxSZ1fZQoaAZoCWgPQwiVYHE4M49xQJSGlFKUaBVNAAVoFkdAqcoNlum78XV9lChoBmgJaA9DCK2jqglik3FAlIaUUpRoFU3sBGgWR0Cpynw2l2vCdX2UKGgGaAloD0MIQ+c1dkmfcUCUhpRSlGgVTdcEaBZHQKocOzRhMJx1fZQoaAZoCWgPQwiZg6CjVWxxQJSGlFKUaBVNCgVoFkdAqh5SqIacZ3V9lChoBmgJaA9DCKLsLeW8aXFAlIaUUpRoFU0XBWgWR0CqIC2rXDm9dX2UKGgGaAloD0MI93ZLcgCQcUCUhpRSlGgVTesEaBZHQKog69Pk7wN1fZQoaAZoCWgPQwjRyr3AbGVxQJSGlFKUaBVNDwVoFkdAqokNNnGsFXV9lChoBmgJaA9DCDuL3qlAh3FAlIaUUpRoFU0BBWgWR0CqiRfkmx+sdX2UKGgGaAloD0MI0uRiDGyecUCUhpRSlGgVTdsEaBZHQKqJt5TIeYF1fZQoaAZoCWgPQwgot+171HNxQJSGlFKUaBVNDwVoFkdAqoox1A7gbnV9lChoBmgJaA9DCNy8cVKYRzxAlIaUUpRoFU2LAmgWR0CqiyzMaCL/dX2UKGgGaAloD0MIFasGYe64cUCUhpRSlGgVTdMEaBZHQKqLYZ0jkdV1fZQoaAZoCWgPQwgfTIqPD4hxQJSGlFKUaBVN+QRoFkdAqouhQLux8nV9lChoBmgJaA9DCKYr2Eb8s3FAlIaUUpRoFU3gBGgWR0Cqi8hOgxrSdX2UKGgGaAloD0MIc9cS8oGHcUCUhpRSlGgVTe4EaBZHQKqMDPci4ax1fZQoaAZoCWgPQwicNA2K5nVYwJSGlFKUaBVLfGgWR0CqjVVy/9HddX2UKGgGaAloD0MIIlSp2UN3cUCUhpRSlGgVTfgEaBZHQKqOSVoHs1N1fZQoaAZoCWgPQwgMsmX5epNxQJSGlFKUaBVN8ARoFkdAqo/p8MNMG3V9lChoBmgJaA9DCLIrLSN1fXFAlIaUUpRoFU37BGgWR0Cq2nV3EAHWdX2UKGgGaAloD0MIDqFKzd5kcUCUhpRSlGgVTQQFaBZHQKrcM8mKIi11fZQoaAZoCWgPQwiBBwYQPiRTwJSGlFKUaBVNEgFoFkdAqtzRwfhddHV9lChoBmgJaA9DCBuEud0LjnFAlIaUUpRoFU3iBGgWR0Cq3nQP7N0OdX2UKGgGaAloD0MIaTnQQ22NcUCUhpRSlGgVTQAFaBZHQKrfN029+PR1fZQoaAZoCWgPQwi4kh0bgZ5xQJSGlFKUaBVN4QRoFkdAquEd5+pfhXV9lChoBmgJaA9DCM76lGOyk3FAlIaUUpRoFU3qBGgWR0Cq4WWl/H5rdX2UKGgGaAloD0MIkBFQ4ciNcUCUhpRSlGgVTesEaBZHQKrlEbpeNT91fZQoaAZoCWgPQwg57L5j+LRxQJSGlFKUaBVN0ARoFkdAquU5VdX1anV9lChoBmgJaA9DCH2R0JazYHFAlIaUUpRoFU33BGgWR0Cq6InoouwpdX2UKGgGaAloD0MInStKCUHDcUCUhpRSlGgVTcUEaBZHQKs6OWKMvRJ1fZQoaAZoCWgPQwhftMcLaXhxQJSGlFKUaBVN9ARoFkdAqzp1e+mFanV9lChoBmgJaA9DCGHFqdYCnXFAlIaUUpRoFU39BGgWR0CrPGOinHeadX2UKGgGaAloD0MIev60UR2scUCUhpRSlGgVTdYEaBZHQKs93I065oZ1fZQoaAZoCWgPQwjjFvNzg4RxQJSGlFKUaBVN+QRoFkdAqz3exY7q6nV9lChoBmgJaA9DCCu+ofAZT3FAlIaUUpRoFU0jBWgWR0CrPigG8mKJdX2UKGgGaAloD0MItFpgj4lZcUCUhpRSlGgVTf0EaBZHQKs+pJJ5E+h1fZQoaAZoCWgPQwgy422ll3hxQJSGlFKUaBVNCwVoFkdAqz7/7pFCs3V9lChoBmgJaA9DCKn4vyPqx3FAlIaUUpRoFU28BGgWR0CrPwJVCHARdX2UKGgGaAloD0MI6wCIu3rDcUCUhpRSlGgVTcQEaBZHQKtBUGs3hn91fZQoaAZoCWgPQwhOfLWjuI5xQJSGlFKUaBVN6QRoFkdAq0RMzImw7nV9lChoBmgJaA9DCN9Szhe7knFAlIaUUpRoFU3PBGgWR0CrRUjPGACodX2UKGgGaAloD0MIMunvpbCkcUCUhpRSlGgVTdgEaBZHQKtFh/CIk7h1fZQoaAZoCWgPQwhf04OC0oZxQJSGlFKUaBVNDwVoFkdAq0YyRyOrAHV9lChoBmgJaA9DCJLrppSX4XFAlIaUUpRoFU2jBGgWR0CrjPtlAeJYdX2UKGgGaAloD0MIZaVJKWiDcUCUhpRSlGgVTQYFaBZHQKuOcAQQL/l1fZQoaAZoCWgPQwhd4PJYM7VxQJSGlFKUaBVN0wRoFkdAq47LB/I8yXV9lChoBmgJaA9DCKvnpPcNhnFAlIaUUpRoFU3oBGgWR0CrjyT67/XHdX2UKGgGaAloD0MIrADfbV6HcUCUhpRSlGgVTf4EaBZHQKuPa1n/T9d1fZQoaAZoCWgPQwgYmYBfY6txQJSGlFKUaBVNyQRoFkdAq4/b5mAbynV9lChoBmgJaA9DCJOQSNs4jHFAlIaUUpRoFU3hBGgWR0CrkYAwoLG8dX2UKGgGaAloD0MI5XtGIrSjcUCUhpRSlGgVTcwEaBZHQKuSiX9itq51fZQoaAZoCWgPQwjdsdgmla5xQJSGlFKUaBVN3QRoFkdAq5PuyPdVN3V9lChoBmgJaA9DCNsX0Au3f3FAlIaUUpRoFU3oBGgWR0Crlf36hxo7dX2UKGgGaAloD0MINA9gkZ9zcUCUhpRSlGgVTRYFaBZHQKuX7ZJ04ip1fZQoaAZoCWgPQwjWrDO+75ZxQJSGlFKUaBVN6gRoFkdAq5hHLmp2lnV9lChoBmgJaA9DCNQpj25EhnFAlIaUUpRoFU0FBWgWR0Crmcz544ZNdX2UKGgGaAloD0MIJcy0/SukcUCUhpRSlGgVTdYEaBZHQKuanwAlv611fZQoaAZoCWgPQwindoapLZ1xQJSGlFKUaBVN8ARoFkdAq5sduejEenV9lChoBmgJaA9DCNlfdk8eo3FAlIaUUpRoFU3ZBGgWR0Cr7MtSQ5mzdX2UKGgGaAloD0MINIXOa2yacUCUhpRSlGgVTfcEaBZHQKvt0rOqvNh1fZQoaAZoCWgPQwiYGMv0i6pxQJSGlFKUaBVN8gRoFkdAq/DwHTqjanVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 500, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-bipedal-walker-v3.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fe7ec0dfcf2ce7b447fd686b0647134f1fe75522ad757d91bf91de92d06576b5
|
3 |
+
size 174008
|
ppo-bipedal-walker-v3/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-bipedal-walker-v3/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f7adf8d5dd0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7adf8d5e60>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7adf8d5ef0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7adf8d5f80>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f7adf8db050>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f7adf8db0e0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7adf8db170>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f7adf8db200>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7adf8db290>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7adf8db320>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7adf8db3b0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f7adf8a5720>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVPwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLGIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWYAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UaApLGIWUjAFDlHSUUpSMBGhpZ2iUaBIolmAAAAAAAAAAAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgKSxiFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLGIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoIUsYhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
24
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
38 |
+
":serialized:": "gAWVdwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/lGgKSwSFlIwBQ5R0lFKUjARoaWdolGgSKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaApLBIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYEAAAAAAAAAAEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYEAAAAAAAAAAEBAQGUaCFLBIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
39 |
+
"dtype": "float32",
|
40 |
+
"_shape": [
|
41 |
+
4
|
42 |
+
],
|
43 |
+
"low": "[-1. -1. -1. -1.]",
|
44 |
+
"high": "[1. 1. 1. 1.]",
|
45 |
+
"bounded_below": "[ True True True True]",
|
46 |
+
"bounded_above": "[ True True True True]",
|
47 |
+
"_np_random": null
|
48 |
+
},
|
49 |
+
"n_envs": 32,
|
50 |
+
"num_timesteps": 1048576,
|
51 |
+
"_total_timesteps": 1000000,
|
52 |
+
"_num_timesteps_at_start": 0,
|
53 |
+
"seed": null,
|
54 |
+
"action_noise": null,
|
55 |
+
"start_time": 1652372277.0956016,
|
56 |
+
"learning_rate": 0.0003,
|
57 |
+
"tensorboard_log": null,
|
58 |
+
"lr_schedule": {
|
59 |
+
":type:": "<class 'function'>",
|
60 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
61 |
+
},
|
62 |
+
"_last_obs": {
|
63 |
+
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVdQwAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYADAAAAAAAAMwX9j2sOmU8yebKPtlJErxhI0C+AgCAP6g4A78BAIC/AAAAAN2ziT+Bf1A+EiGCPpCoQr8AAAAACQagPkKjoT4rIqc+VFKxPl4Twz7yZt0+t/0AP/LLHT+t0VM/AACAP3qHmj5juZ+6CL7NPu+FBT2FlRm/AwCAP4Ab7L0BAIC/AAAAAIgUij+UzxK+JFUlPv3/fz8AAAAAQviOPjlpjj5LY5I+DP2aPpZ1qj4NnMI+eD7pPsdsFT8VyFA/AACAP0HFCD6d4Pg8ABrIPoiBWL3iq2U+/yXcvjxCOr9VvX65AACAP4IOjj8AAICy/O/mPgMAgL8AAAAAQ7WhPmKXoz5wWKk+Yzq0PqQZxT6I+t4+znMDP/fOIT9hW1o/AACAP4omPD5+kYs8W4e/Pj+DNDww2ba+AQCAP8R0zr4AAIC/AAAAABRejT9ZuaO+hoOIPv//fz8AAAAANLmaPimunT74vqM+rMCtPmuLvD4NHtQ+/9v5Pj8dGz8SQEk/AACAP8iXfT74Lgu9J+P/PvWUiz1Gtw+/MQdSvwD0hbtXSYA/AAAAACQXjj8AAF83lvIVP3j0f78AAAAAE3OYPkkumj7dZJ8+HsqoPldctz5k2c0+c6TwPrOCFT8ST0U/AACAPz8O3j0GrI46WwQPP9AAD71pPYW+3vqFv4SroL71HDY/AACAP6pEkT8AAAAAlmI1P31FrD4AAAAA//6ePj7NoD4D7qY+srGyPg4dxj7mTeI+a2kGP3VCIz+gjFM/AACAP8OMRj6lS0i8p9ybPnSajb3MzpM9XYbKvgDZIr/9Aso9AACAPw8qlz/8/38/1NLWvgklgb8AAIA/EKOePia7oD5slqY+WuqwPpYsvz5ej9c+cCcCP5pIJT84+mU/AACAP7yuCT7lk4w8oGqmu240aL5NDlg++/9/PxST4b4VkYW/AACAP7imjj8SaIS+dA5tPwAAgLMAAAAAU3i5PomTuz4bJMI+uvnNPoG44D5qe/0+aS8VPxtgOj8AAIA/AACAP0ajTz7/ajo9SM+MPmMbaD20uSy+/P9/P5Bq2L4sJIO/AACAP4DdkD8AAAAAjGIjPv//f78AAAAAUWCVPi5tlj4ZXJo+AqWiPkVysT68HcY+bbfpPj29GT8+X1k/AACAP42dfD4mJg09aVu6PgWfKD3r9BG/KZl/P8A+ML3E/X+/AAAAAFhVkT8A4Ak4gFatPcnoLr8AAIA/A0eUPnXvlT7nOpo+QnmiPm9urz4v8cI+s2zgPqVzCT9Gkjo/AACAP6I0MT5Ez7K8HtD0PqpIYrz7J9e+l0pDv4DfP7455zM/AACAP/E/jz8AAF02dJcFP2v8f78AAAAAbqKUPjRflj7qmZs+ZtalPpbMtT7Vysw+AEbxPtTPGj/MN1s/AACAPxKBDz4s6U69qL8LP6Y2PL3smb2+B6Ukv/x0g76EGiw/AAAAAFR5lj/+/38/QlZvPyQBSb8AAAAA33WYPj8Smz5teKE+snisPkWRuz6Ko9E+4nbyPt2TEj+92UE/AACAP2FUgz5q49O63sjCPhEwdb2w+L6+BACAP1hA274BAIC/AAAAANGPkD8AADCymvXHPvv/fz8AAAAAMsOQPmhakz51LZg+6sKgPtdyrz449MU+5I/pPsHsED88VEI/AACAP1IcaD4jous6sY//PvZyX71bzLG+ytVtv+g/yb7KRBI/AACAP/QFjT8AAAAARgzaPnmSbL8AAAAACtiQPs29kT4KbpU+zducPgW7pz4lero+u1HbPl1OCj+yIkQ/AACAPwY2kD7gKBy9CdO/Ph3uhr3VuCy+u6ayvtg5Cr8cb8g+AACAP/ajjz9Sn78+slEfP///fz8AAAAACNSRPgVUkD4pe5M+E5aaPqZzqD498L0+vRjgPrWNDT+Bgko/AACAPw7ghD2TIQI8dWrZPpaXA73mkTQ+AQCAP/AUNb91Lmi/AACAP3txjD9azdW+0MkxvukGRL4AAIA/aFeiPuGEpz7LW7A+UJy9PhI3zz4WcOY+aGwGPyanHj9s00o/AACAP2hu+j1T9S269qACP/p57jxwD52+OgZ7v5jzhL4I9U8/AACAP1omjz8AAAAA+2cvP/v/f78AAAAA4ImdPl8toT6ZCak+0z22Prh2xz6zb98+Bq8CPwBPHj9VHFg/AACAP0eeCT5SXMe8aYcGP5FOWD2yxd6+dJZsvwBV1LwNk4A/AAAAAKVEkT8AwM03aAwEP2N9L78AAAAAphiVPj2ulj4nAJw+QumlPugutT7wgc0+lrr2Pq11Gz/Dcmk/AACAPyXRpL0/o229vFfZPhKnajs44bK+nbk5PyDzXj3//3+/AAAAAOUDkD8AAAAAPHXMPv3/f78AAAAA/CGfPmjYoz58Wq0+1YK8PnE60z5Fw/I+f7kOP7c/LT9xa2s/AACAP0vfTT4O3XI8R20DP/cT7DwOVY6+veeLv7Cdib5w1UE/AACAP88ajj/s11c+HN0xP03ckr0AAAAA0QOlPpY3pT6M36k+w0K0Prh1xD5iNtw+CjQAP7gMHj87dFY/AACAP//daT4KQxC9xZ8CPyTDCD1/oBW/LJtbv6B/Nb0yIoA/AAAAALn0jT/52rs+KjkHP4dyDL0AAAAAXbOVPo09mD4DgZ4+4UupPmZLuD7aEs0+yvjrPqOzET/Wr0A/AACAP2xDmD6Bz3U9Bv2nPre/WD36AsS+0QydPiyH8L4D23+/AACAPzBIkD8AAEy2kIPXPewBgL8AAAAATzmPPnudjz5CNJM+FDaaPmO0pT6v3bo+EZTYPgK7Bz8yTDk/AACAPyMzTD6/Eva7yKoOPyV7lTxByh2/keSBv2BqhTwBAIA/AAAAAItHjD9XHFa+6qYvP///f78AAAAANEyYPvkGmj6uvZ8+TEGqPs/zuz7sBtc+BXD9PjKWGD+3JUA/AACAP7OwTT2pTm691VjtPgRMLL35dB+/MrQZv0RwQj6zHGU/AACAPzmrlz+R2H8/hr+VPhcFgL8AAIA/G/iOPmoPkj7olZg+nY6jPuCRtD6AK9A+/uj4Ph3gHT+VrVg/AACAP4BJAT45mgW9F7IKP8RpjrsHqxq/nntZvzgVVT79/38/AACAPy8RkT8AAAAAHSwpPwEAgL8AAAAAAWafPms1oT58l6c+m8SzPqLbxT7ztN8+33wDP1XHIz8qXXA/AACAPwxBIz5B5NS8Z5bJPgSh/7yGc7i9ICz+voTJ+r6kVa8+AACAPzRphj8R4z8+mAE0P/z/fz8AAAAArlqbPj8hnD4/oqA+O0CqPl2quT4AAtE+NCH1PiBOHD8lKFc/AACAP+wzNj46EAi9rhz5Pp/nEDurIk+/niM3v9bnwT4BAIA/AACAP586fj+VH5q+2jADP1xqGj8AAIA/Y1qgPoLJoj6Bc6c+2omvPl7/vD7LUNE+yqvxPpSVEj/Yr0Q/AACAP6uF1j3IutC9N2IAP7RjSL2fNRa/AscjP+hQ1z3//3+/AAAAAPjbjj8xbTc/iGHRPv//f78AAAAAck+VPl5glz6crJw+s+enPv1quj5KO9g+WvIAP201IT+/dFk/AACAP3sWcD5YyXe6lz8QPy5iqLxWRt++F5GJv+hAOb5DVU0/AACAPy2Jhz+Iui6/gt9QP///fz8AAAAAlteWPs+RmD76cp8+lSOrPrQjvT7OWNU+WuwDP1uhLD9t9mo/AACAPwX0jD5OdR29CtvmPuihX724ZwG//P9/P/iSpb7//3+/AAAAAKdEkT8AAAAACHTHPgns8j0AAAAA9fiZPj+/mz4f858+3q+oPukJuD5HP88+e0fzPiCAGj96pVQ/AACAP1ICKz1fVX69IkcJPxNLV70kIOq+FVEavwDzs71B1E0/AAAAAJfJkD9wHow/xhXrPgAAgL8AAIA/ANmSPrHSlT4EEZs+IHClPjIMuD6WFdI+H0b4PvBiGj9fF00/AACAP6l/7D1gddo5dKClPnICNr3Nhm69AwCAPwh4+r4AAIC/AAAAAHM0jz8AAAiyYPVePvv/fz8AAAAAMyGgPhDpoj6knKg+bda1Pjroyz71EPA+zagTPy3DOj8AAIA/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLIEsYhpSMAUOUdJRSlC4="
|
65 |
+
},
|
66 |
+
"_last_episode_starts": {
|
67 |
+
":type:": "<class 'numpy.ndarray'>",
|
68 |
+
":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="
|
69 |
+
},
|
70 |
+
"_last_original_obs": null,
|
71 |
+
"_episode_num": 0,
|
72 |
+
"use_sde": false,
|
73 |
+
"sde_sample_freq": -1,
|
74 |
+
"_current_progress_remaining": -0.04857599999999995,
|
75 |
+
"ep_info_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIL2tigW+acUCUhpRSlIwBbJRN6ASMAXSUR0CpARXKr7wbdX2UKGgGaAloD0MIYoVbPtKJcUCUhpRSlGgVTfkEaBZHQKkCumVJL/V1fZQoaAZoCWgPQwg3GsBbIAtdwJSGlFKUaBVLU2gWR0CpA4WilBQfdX2UKGgGaAloD0MIniRdM/ldcUCUhpRSlGgVTSkFaBZHQKkFVOZ9d/t1fZQoaAZoCWgPQwiRCmMLgVZxQJSGlFKUaBVNIQVoFkdAqQWz0nPVu3V9lChoBmgJaA9DCDIAVHFjf3FAlIaUUpRoFU0IBWgWR0CpBgyrgflqdX2UKGgGaAloD0MIG4F4Xb8zXUCUhpRSlGgVTVEEaBZHQKkGLSofjjt1fZQoaAZoCWgPQwj+7h01JsRMwJSGlFKUaBVNBwFoFkdAqQY9qJuVHHV9lChoBmgJaA9DCLDIrx9ieHFAlIaUUpRoFU3sBGgWR0CpBqi4J/oadX2UKGgGaAloD0MIigESTeCScUCUhpRSlGgVTegEaBZHQKkHO9yLhrF1fZQoaAZoCWgPQwix9+KLdqZxQJSGlFKUaBVN6QRoFkdAqQmwxk/bCnV9lChoBmgJaA9DCKLRHcSOkXFAlIaUUpRoFU3lBGgWR0CpCkMNc4YKdX2UKGgGaAloD0MIMSb9vdRfcUCUhpRSlGgVTRoFaBZHQKkLvhuwX691fZQoaAZoCWgPQwig4c0avGtxQJSGlFKUaBVNMAVoFkdAqQ22ITGo73V9lChoBmgJaA9DCF5m2CgrbHFAlIaUUpRoFU0CBWgWR0CpDdIoE0SAdX2UKGgGaAloD0MIflGC/gJtcUCUhpRSlGgVTQ4FaBZHQKkOL9lVcUx1fZQoaAZoCWgPQwh8ZHPV/HxxQJSGlFKUaBVNCAVoFkdAqQ7bGvOhTXV9lChoBmgJaA9DCHtP5bTnd3FAlIaUUpRoFU0MBWgWR0CpYLsYl6Z6dX2UKGgGaAloD0MI2ClWDQK5cUCUhpRSlGgVTdMEaBZHQKlhxPVurIZ1fZQoaAZoCWgPQwit+lxtBbFxQJSGlFKUaBVN3wRoFkdAqWKFnyup0nV9lChoBmgJaA9DCH433bLDlHFAlIaUUpRoFU3fBGgWR0CpYrBfShJzdX2UKGgGaAloD0MI4xbzcwOmcUCUhpRSlGgVTeAEaBZHQKlisyKvV3F1fZQoaAZoCWgPQwiasP1kjGpxQJSGlFKUaBVNEgVoFkdAqWSWkDZDiXV9lChoBmgJaA9DCBCugEK9eXFAlIaUUpRoFU0FBWgWR0CpZnuBMBZIdX2UKGgGaAloD0MINUWA0/udcUCUhpRSlGgVTfoEaBZHQKlnEnLq2Sd1fZQoaAZoCWgPQwiAuKtXUZhxQJSGlFKUaBVN6QRoFkdAqWiWQEIPb3V9lChoBmgJaA9DCOY+OQqQVnFAlIaUUpRoFU0iBWgWR0Cpa95CngpCdX2UKGgGaAloD0MIbhYvFoZ7cUCUhpRSlGgVTQEFaBZHQKlr/Jaq0dB1fZQoaAZoCWgPQwj8cfvlk7dNQJSGlFKUaBVNCgNoFkdAqW7GRV6u4nV9lChoBmgJaA9DCOaw+47hZXFAlIaUUpRoFU0aBWgWR0CpbsbPIGQkdX2UKGgGaAloD0MIDW/W4P1dcUCUhpRSlGgVTRsFaBZHQKm/UBPKuCB1fZQoaAZoCWgPQwiWCb/Uz0xxQJSGlFKUaBVNMQVoFkdAqcBGEZiuuHV9lChoBmgJaA9DCEVlw5qKh3FAlIaUUpRoFU3uBGgWR0CpwNKSowVTdX2UKGgGaAloD0MImpMXmQBwcUCUhpRSlGgVTQwFaBZHQKnCcIUrTYx1fZQoaAZoCWgPQwhMUwQ4PZVxQJSGlFKUaBVN8gRoFkdAqcYVnIyTIXV9lChoBmgJaA9DCKK2DaMgkHFAlIaUUpRoFU3+BGgWR0Cpxzjlo11odX2UKGgGaAloD0MIoN/3bx6zcUCUhpRSlGgVTdIEaBZHQKnHwwUQCjl1fZQoaAZoCWgPQwiXxcTmI51xQJSGlFKUaBVN2wRoFkdAqchtr2xptnV9lChoBmgJaA9DCAgFpWglmnFAlIaUUpRoFU3xBGgWR0CpyWsDGLk0dX2UKGgGaAloD0MIVoDvNu90cUCUhpRSlGgVTQAFaBZHQKnJ/CfHxSZ1fZQoaAZoCWgPQwiVYHE4M49xQJSGlFKUaBVNAAVoFkdAqcoNlum78XV9lChoBmgJaA9DCK2jqglik3FAlIaUUpRoFU3sBGgWR0Cpynw2l2vCdX2UKGgGaAloD0MIQ+c1dkmfcUCUhpRSlGgVTdcEaBZHQKocOzRhMJx1fZQoaAZoCWgPQwiZg6CjVWxxQJSGlFKUaBVNCgVoFkdAqh5SqIacZ3V9lChoBmgJaA9DCKLsLeW8aXFAlIaUUpRoFU0XBWgWR0CqIC2rXDm9dX2UKGgGaAloD0MI93ZLcgCQcUCUhpRSlGgVTesEaBZHQKog69Pk7wN1fZQoaAZoCWgPQwjRyr3AbGVxQJSGlFKUaBVNDwVoFkdAqokNNnGsFXV9lChoBmgJaA9DCDuL3qlAh3FAlIaUUpRoFU0BBWgWR0CqiRfkmx+sdX2UKGgGaAloD0MI0uRiDGyecUCUhpRSlGgVTdsEaBZHQKqJt5TIeYF1fZQoaAZoCWgPQwgot+171HNxQJSGlFKUaBVNDwVoFkdAqoox1A7gbnV9lChoBmgJaA9DCNy8cVKYRzxAlIaUUpRoFU2LAmgWR0CqiyzMaCL/dX2UKGgGaAloD0MIFasGYe64cUCUhpRSlGgVTdMEaBZHQKqLYZ0jkdV1fZQoaAZoCWgPQwgfTIqPD4hxQJSGlFKUaBVN+QRoFkdAqouhQLux8nV9lChoBmgJaA9DCKYr2Eb8s3FAlIaUUpRoFU3gBGgWR0Cqi8hOgxrSdX2UKGgGaAloD0MIc9cS8oGHcUCUhpRSlGgVTe4EaBZHQKqMDPci4ax1fZQoaAZoCWgPQwicNA2K5nVYwJSGlFKUaBVLfGgWR0CqjVVy/9HddX2UKGgGaAloD0MIIlSp2UN3cUCUhpRSlGgVTfgEaBZHQKqOSVoHs1N1fZQoaAZoCWgPQwgMsmX5epNxQJSGlFKUaBVN8ARoFkdAqo/p8MNMG3V9lChoBmgJaA9DCLIrLSN1fXFAlIaUUpRoFU37BGgWR0Cq2nV3EAHWdX2UKGgGaAloD0MIDqFKzd5kcUCUhpRSlGgVTQQFaBZHQKrcM8mKIi11fZQoaAZoCWgPQwiBBwYQPiRTwJSGlFKUaBVNEgFoFkdAqtzRwfhddHV9lChoBmgJaA9DCBuEud0LjnFAlIaUUpRoFU3iBGgWR0Cq3nQP7N0OdX2UKGgGaAloD0MIaTnQQ22NcUCUhpRSlGgVTQAFaBZHQKrfN029+PR1fZQoaAZoCWgPQwi4kh0bgZ5xQJSGlFKUaBVN4QRoFkdAquEd5+pfhXV9lChoBmgJaA9DCM76lGOyk3FAlIaUUpRoFU3qBGgWR0Cq4WWl/H5rdX2UKGgGaAloD0MIkBFQ4ciNcUCUhpRSlGgVTesEaBZHQKrlEbpeNT91fZQoaAZoCWgPQwg57L5j+LRxQJSGlFKUaBVN0ARoFkdAquU5VdX1anV9lChoBmgJaA9DCH2R0JazYHFAlIaUUpRoFU33BGgWR0Cq6InoouwpdX2UKGgGaAloD0MInStKCUHDcUCUhpRSlGgVTcUEaBZHQKs6OWKMvRJ1fZQoaAZoCWgPQwhftMcLaXhxQJSGlFKUaBVN9ARoFkdAqzp1e+mFanV9lChoBmgJaA9DCGHFqdYCnXFAlIaUUpRoFU39BGgWR0CrPGOinHeadX2UKGgGaAloD0MIev60UR2scUCUhpRSlGgVTdYEaBZHQKs93I065oZ1fZQoaAZoCWgPQwjjFvNzg4RxQJSGlFKUaBVN+QRoFkdAqz3exY7q6nV9lChoBmgJaA9DCCu+ofAZT3FAlIaUUpRoFU0jBWgWR0CrPigG8mKJdX2UKGgGaAloD0MItFpgj4lZcUCUhpRSlGgVTf0EaBZHQKs+pJJ5E+h1fZQoaAZoCWgPQwgy422ll3hxQJSGlFKUaBVNCwVoFkdAqz7/7pFCs3V9lChoBmgJaA9DCKn4vyPqx3FAlIaUUpRoFU28BGgWR0CrPwJVCHARdX2UKGgGaAloD0MI6wCIu3rDcUCUhpRSlGgVTcQEaBZHQKtBUGs3hn91fZQoaAZoCWgPQwhOfLWjuI5xQJSGlFKUaBVN6QRoFkdAq0RMzImw7nV9lChoBmgJaA9DCN9Szhe7knFAlIaUUpRoFU3PBGgWR0CrRUjPGACodX2UKGgGaAloD0MIMunvpbCkcUCUhpRSlGgVTdgEaBZHQKtFh/CIk7h1fZQoaAZoCWgPQwhf04OC0oZxQJSGlFKUaBVNDwVoFkdAq0YyRyOrAHV9lChoBmgJaA9DCJLrppSX4XFAlIaUUpRoFU2jBGgWR0CrjPtlAeJYdX2UKGgGaAloD0MIZaVJKWiDcUCUhpRSlGgVTQYFaBZHQKuOcAQQL/l1fZQoaAZoCWgPQwhd4PJYM7VxQJSGlFKUaBVN0wRoFkdAq47LB/I8yXV9lChoBmgJaA9DCKvnpPcNhnFAlIaUUpRoFU3oBGgWR0CrjyT67/XHdX2UKGgGaAloD0MIrADfbV6HcUCUhpRSlGgVTf4EaBZHQKuPa1n/T9d1fZQoaAZoCWgPQwgYmYBfY6txQJSGlFKUaBVNyQRoFkdAq4/b5mAbynV9lChoBmgJaA9DCJOQSNs4jHFAlIaUUpRoFU3hBGgWR0CrkYAwoLG8dX2UKGgGaAloD0MI5XtGIrSjcUCUhpRSlGgVTcwEaBZHQKuSiX9itq51fZQoaAZoCWgPQwjdsdgmla5xQJSGlFKUaBVN3QRoFkdAq5PuyPdVN3V9lChoBmgJaA9DCNsX0Au3f3FAlIaUUpRoFU3oBGgWR0Crlf36hxo7dX2UKGgGaAloD0MINA9gkZ9zcUCUhpRSlGgVTRYFaBZHQKuX7ZJ04ip1fZQoaAZoCWgPQwjWrDO+75ZxQJSGlFKUaBVN6gRoFkdAq5hHLmp2lnV9lChoBmgJaA9DCNQpj25EhnFAlIaUUpRoFU0FBWgWR0Crmcz544ZNdX2UKGgGaAloD0MIJcy0/SukcUCUhpRSlGgVTdYEaBZHQKuanwAlv611fZQoaAZoCWgPQwindoapLZ1xQJSGlFKUaBVN8ARoFkdAq5sduejEenV9lChoBmgJaA9DCNlfdk8eo3FAlIaUUpRoFU3ZBGgWR0Cr7MtSQ5mzdX2UKGgGaAloD0MINIXOa2yacUCUhpRSlGgVTfcEaBZHQKvt0rOqvNh1fZQoaAZoCWgPQwiYGMv0i6pxQJSGlFKUaBVN8gRoFkdAq/DwHTqjanVlLg=="
|
78 |
+
},
|
79 |
+
"ep_success_buffer": {
|
80 |
+
":type:": "<class 'collections.deque'>",
|
81 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
82 |
+
},
|
83 |
+
"_n_updates": 500,
|
84 |
+
"n_steps": 2048,
|
85 |
+
"gamma": 0.99,
|
86 |
+
"gae_lambda": 0.95,
|
87 |
+
"ent_coef": 0.0,
|
88 |
+
"vf_coef": 0.5,
|
89 |
+
"max_grad_norm": 0.5,
|
90 |
+
"batch_size": 64,
|
91 |
+
"n_epochs": 10,
|
92 |
+
"clip_range": {
|
93 |
+
":type:": "<class 'function'>",
|
94 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
95 |
+
},
|
96 |
+
"clip_range_vf": null,
|
97 |
+
"normalize_advantage": true,
|
98 |
+
"target_kl": null
|
99 |
+
}
|
ppo-bipedal-walker-v3/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a8e24d337672db37c8292b98679a92000063178c654e0948fbae78297a1e7e7f
|
3 |
+
size 101783
|
ppo-bipedal-walker-v3/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ede3d16847c21e196d4769c53db2b0d7b5f3ae6daf0fe449c3cd3cbb7c5e07fb
|
3 |
+
size 51710
|
ppo-bipedal-walker-v3/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-bipedal-walker-v3/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:71cc14d82d373a81d38c5977e47483ba11d1a07c7c85190a1251615f9ca6c28d
|
3 |
+
size 402769
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 302.92784551107314, "std_reward": 0.819415500317531, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-12T17:20:50.992321"}
|