from lookup_sparsity_blob import SparseBlob import matplotlib.pyplot as plt from glob import glob def plot_layer_hist(df, row_id, ax, type=None): if type is None: return "pls specify type='widest' or 'narrowest'" cols = ['layer_id', 'shape', 'sparsity','tile_limit', 'tile_min', 'tile_med', 'tile_max', 'tile_shape', 'n_tile'] meta = df.loc[row_id, cols] tensor = sb._blob[meta.layer_id]['tile_sparsity'] l = meta.layer_id l_shape = str(tuple(meta['shape'])) l_sparsity = meta.sparsity*100 hist_limit = f"min: {meta.tile_min:.2f}, median: {meta.tile_med:.2f}, max: {meta.tile_max:.2f}" l_cfg = f"{meta.n_tile} tiles of {meta.tile_shape}" ax.hist(tensor.flatten().cpu().numpy(), bins=25, edgecolor='white', color='blue') ax.set_xlabel('Tile Sparsity') ax.set_ylabel('Frequency') ax.set_title(f'{l} {l_shape}\nlayer_sparsity: {l_sparsity:2.0f}%\n\ntile_sparsity ({type}):\n{hist_limit}\n\n{l_cfg}') ax.grid(True, axis='y', linestyle='--', alpha=0.3) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) ax.tick_params(axis='both', which='major', labelsize=12) sparse_model_list = sorted(glob("blob.sparsity*")) for model_blob in sparse_model_list: plot_name = model_blob.replace("blob.sparsity.", "tile_sparsity_dist.") sb = SparseBlob(model_blob) df = sb._rpt[:-1] df['tile_limit'] = df.tile_max - df.tile_min fig, axes = plt.subplots(1, 2, figsize=(12, 5)) # 1 row, 2 columns plot_layer_hist(df, df.tile_limit.idxmin(), axes[0], type="narrowest") plot_layer_hist(df, df.tile_limit.idxmax(), axes[1], type="widest") plt.tight_layout() plt.savefig(f'{plot_name}.png')