vsiva commited on
Commit
3dea15f
·
1 Parent(s): a89cfc3

Initial model, all defaults.

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 247.93 +/- 20.77
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fce24bdddc0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fce24bdde50>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fce24bddee0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fce24bddf70>", "_build": "<function ActorCriticPolicy._build at 0x7fce24be1040>", "forward": "<function ActorCriticPolicy.forward at 0x7fce24be10d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fce24be1160>", "_predict": "<function ActorCriticPolicy._predict at 0x7fce24be11f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fce24be1280>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fce24be1310>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fce24be13a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fce24bdc510>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1672204805531212416, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIBQVT16iUM/7Ub9ve5Rjr59XOu8GbwdvQAAAAAAAAAA2qGRPYUXJD4D3e29cLmSvlvM1r3mvVU9AAAAAAAAAABz020+M0W5P/LhHj/6RLm+d9G4PqO1Dz4AAAAAAAAAACaglL3sMbk481gIOWMaBjRJSk076IgiuAAAgD8AAAAAOkAfPggnij9oyd87Nam+vj5kHz4uvH67AAAAAAAAAACzbli9vtvyPanyuTx7z3S+QIP9ut26Gb0AAAAAAAAAAIY5FT5SdYm7hkvxOn6/VrjvlMW8diQSugAAgD8AAIA/s6cAPR/dlbn+exk40XKSM5LHjDtEbTe3AACAPwAAgD9mMT29vB47P/WIo73XbY6+AuA7vUI0NbwAAAAAAAAAAM1oorvqphw+eN5cPf1rir6dS408VrCWvQAAAAAAAAAAmrtwPK4pt7oW/rE3JHOnMtU4BjoIccu2AACAPwAAgD9NCFm+3BHgPsX88D0R3z6+ZNwXPWb4rT0AAAAAAAAAAJr2UL32ZDi6gtVEOwHvbjjNmpW7yJnvuQAAgD8AAAAAc9faPX/8iz9LmeE9jZO6vsmaJj4yPui9AAAAAAAAAABAh8w9gIZLPyur/r0tbsm+Ndy2PAvdZL0AAAAAAAAAAM2UTb0Vm5Y/FxcMvi9p1b7KlNm9mPJnvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVcxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIJsYy/RI9bkCUhpRSlIwBbJRNNgGMAXSUR0CTlhxs2vSudX2UKGgGaAloD0MIXvI/+fvTcECUhpRSlGgVTWQBaBZHQJOrBVuJk5J1fZQoaAZoCWgPQwiq8Gd484RxQJSGlFKUaBVNCAFoFkdAk6tl9ORDC3V9lChoBmgJaA9DCLOVl/zPSnFAlIaUUpRoFU2QAWgWR0CTq7kC3gDSdX2UKGgGaAloD0MI/bs+c9a/RECUhpRSlGgVS/ZoFkdAk6vCCFsYVXV9lChoBmgJaA9DCGGlgooqWHFAlIaUUpRoFU0bAWgWR0CTrRY1He7+dX2UKGgGaAloD0MIx2MGKuO9b0CUhpRSlGgVTU8BaBZHQJOt3QPZqVR1fZQoaAZoCWgPQwhUrYVZaENvQJSGlFKUaBVNYwFoFkdAk651gc94eXV9lChoBmgJaA9DCOoihbIw1HJAlIaUUpRoFU0tAWgWR0CTrudFOO81dX2UKGgGaAloD0MIcjPcgM8cYECUhpRSlGgVTegDaBZHQJOvDHCGetl1fZQoaAZoCWgPQwi/1M+bipZCQJSGlFKUaBVL12gWR0CTr6BKcurZdX2UKGgGaAloD0MIo3TpX5LQR0CUhpRSlGgVS/ZoFkdAk6/Y3Ns3ynV9lChoBmgJaA9DCDaVRWEXjW9AlIaUUpRoFU07AWgWR0CTsHnrpqyodX2UKGgGaAloD0MI1m670BwGcUCUhpRSlGgVTVQBaBZHQJOy+Dcuand1fZQoaAZoCWgPQwjlKavpemttQJSGlFKUaBVNaAFoFkdAk7MHHJcPfHV9lChoBmgJaA9DCNcv2A1b1m5AlIaUUpRoFU0XAWgWR0CTs9+8oQWfdX2UKGgGaAloD0MIMnGrIIa/bUCUhpRSlGgVTVABaBZHQJO0YbdadMF1fZQoaAZoCWgPQwj6sx8pIvBuQJSGlFKUaBVNNgFoFkdAk7VPrGBFu3V9lChoBmgJaA9DCBoXDoQkZnBAlIaUUpRoFU0tAWgWR0CTtVgam4y5dX2UKGgGaAloD0MI1eqrq8J9cUCUhpRSlGgVTQwBaBZHQJO3qesgdOt1fZQoaAZoCWgPQwgB3gIJCt1wQJSGlFKUaBVNIgFoFkdAk7fEyLyc1HV9lChoBmgJaA9DCHIZNzVQA3FAlIaUUpRoFU1TAWgWR0CTuBOzIFNddX2UKGgGaAloD0MIL2r3q0CRcUCUhpRSlGgVTYEBaBZHQJO4MkmhM8J1fZQoaAZoCWgPQwi30JUIVIdxQJSGlFKUaBVNMQFoFkdAk7i/VVghKXV9lChoBmgJaA9DCBuhn6kXjHBAlIaUUpRoFU0lAWgWR0CTuWzqKP4mdX2UKGgGaAloD0MI6pWyDPErcUCUhpRSlGgVTW4BaBZHQJO5njZL7Gh1fZQoaAZoCWgPQwgfhlYnZwhtQJSGlFKUaBVNMAFoFkdAk7pdv0h/zHV9lChoBmgJaA9DCP+Tv3tH1FlAlIaUUpRoFU3oA2gWR0CTurQnQY1pdX2UKGgGaAloD0MIpu81BMencUCUhpRSlGgVTXIBaBZHQJO7bEFW4mV1fZQoaAZoCWgPQwgktOVcikNGQJSGlFKUaBVL4mgWR0CTu51rZamodX2UKGgGaAloD0MIGTvhJTjNUECUhpRSlGgVS/loFkdAk7vSfL9uP3V9lChoBmgJaA9DCHfYRGYuO3JAlIaUUpRoFU0ZAWgWR0CTu/lOGj9GdX2UKGgGaAloD0MIg9pv7UQFTkCUhpRSlGgVS8JoFkdAk708ZgogFHV9lChoBmgJaA9DCFvTvOOU+m9AlIaUUpRoFU1xAWgWR0CTvk09yLhrdX2UKGgGaAloD0MI1ArT9xrycECUhpRSlGgVTTIBaBZHQJO+gGbCrLh1fZQoaAZoCWgPQwi+M9qqJLIFQJSGlFKUaBVL6mgWR0CTv1ybhFVldX2UKGgGaAloD0MIlBeZgF/ScECUhpRSlGgVTRQBaBZHQJO/u2b5M111fZQoaAZoCWgPQwjKFkm7UW1tQJSGlFKUaBVNNwFoFkdAk8FKjJuEVXV9lChoBmgJaA9DCHLdlPKaDnBAlIaUUpRoFU0hAWgWR0CTwiZF5OafdX2UKGgGaAloD0MIFqQZiyZHbECUhpRSlGgVTVUBaBZHQJPCSXb/Ot51fZQoaAZoCWgPQwjfb7TjhutPQJSGlFKUaBVL62gWR0CTwwRPoFFEdX2UKGgGaAloD0MI8WjjiPWvckCUhpRSlGgVTUsBaBZHQJPDbUqhDgJ1fZQoaAZoCWgPQwjCFyZThT5xQJSGlFKUaBVNLQFoFkdAk8OGjXWe6XV9lChoBmgJaA9DCIrkK4GUimtAlIaUUpRoFU0eAWgWR0CTxNGm1pj+dX2UKGgGaAloD0MIeuBjsCL+cUCUhpRSlGgVTXABaBZHQJPGBn5BTn91fZQoaAZoCWgPQwgHYtnMoYhuQJSGlFKUaBVNZgFoFkdAk8a3AVO9FnV9lChoBmgJaA9DCGDoEaMnbHJAlIaUUpRoFU1wAWgWR0CTxtDOTq0MdX2UKGgGaAloD0MIPglszsHZckCUhpRSlGgVTVEBaBZHQJPII3++/QB1fZQoaAZoCWgPQwj7IqEt5+JMQJSGlFKUaBVLyGgWR0CTyL4BFNL2dX2UKGgGaAloD0MIiGTIsXVJb0CUhpRSlGgVTTsBaBZHQJPI3A8B+4N1fZQoaAZoCWgPQwgjLCridChxQJSGlFKUaBVNLQFoFkdAk8mzKkl/pnV9lChoBmgJaA9DCL9k48EWx0hAlIaUUpRoFUvcaBZHQJPKkq9XcQB1fZQoaAZoCWgPQwiHU+bm2/JwQJSGlFKUaBVNMAFoFkdAk96Qssg+yXV9lChoBmgJaA9DCDC45o6+EXJAlIaUUpRoFU0jAWgWR0CT3wCdjG1hdX2UKGgGaAloD0MI2NKjqV7ocUCUhpRSlGgVTTEBaBZHQJPgKGahHsl1fZQoaAZoCWgPQwjj++JSFVByQJSGlFKUaBVNSQFoFkdAk+FornTy8XV9lChoBmgJaA9DCPnaM0vC5XBAlIaUUpRoFU0VAWgWR0CT4oIl+mWMdX2UKGgGaAloD0MIW7BUF3AxbECUhpRSlGgVTT0BaBZHQJPioYht+Ct1fZQoaAZoCWgPQwhG66hqghg5QJSGlFKUaBVNBgFoFkdAk+RJ7HAAQ3V9lChoBmgJaA9DCP9Z8+Mvy2tAlIaUUpRoFU1PAWgWR0CT5W22oegddX2UKGgGaAloD0MIsi/ZeHCYcECUhpRSlGgVTV4BaBZHQJPmGwqy4Wl1fZQoaAZoCWgPQwhy+Q/pN0lvQJSGlFKUaBVNNgFoFkdAk+bq2v0ROHV9lChoBmgJaA9DCBsRjIPLq2xAlIaUUpRoFU0fAWgWR0CT5xGW2PT5dX2UKGgGaAloD0MIorWizXHjcECUhpRSlGgVTUoBaBZHQJPnh2gWac91fZQoaAZoCWgPQwg4LXjRF7JxQJSGlFKUaBVNLgFoFkdAk+i6p1ie/nV9lChoBmgJaA9DCAVPIVfqJFhAlIaUUpRoFU3oA2gWR0CT6Yay8jA0dX2UKGgGaAloD0MI9aJ2vwrMbkCUhpRSlGgVTTMBaBZHQJPpt+d9Ujt1fZQoaAZoCWgPQwjek4eFGhtxQJSGlFKUaBVNNwFoFkdAk+o0Yj0L+nV9lChoBmgJaA9DCDs42JsYx3FAlIaUUpRoFU0BAWgWR0CT6rFZgXuWdX2UKGgGaAloD0MIo3iVtU06cECUhpRSlGgVTTgBaBZHQJPrP961LJ11fZQoaAZoCWgPQwhWgzC3e91yQJSGlFKUaBVNJgFoFkdAk+zPS2H+InV9lChoBmgJaA9DCGk4ZW6+F1JAlIaUUpRoFUuraBZHQJPu1k1/DtR1fZQoaAZoCWgPQwgIH0q0pEtxQJSGlFKUaBVNBgFoFkdAk+7hG2Cul3V9lChoBmgJaA9DCCEiNe3iVHJAlIaUUpRoFU1TAWgWR0CT8AdrO7g9dX2UKGgGaAloD0MI2PLK9baPcUCUhpRSlGgVTSEBaBZHQJPw/JW/8EV1fZQoaAZoCWgPQwhWnGotjGdwQJSGlFKUaBVNUAFoFkdAk/Ec495hSnV9lChoBmgJaA9DCKabxCDw0XJAlIaUUpRoFU0tAWgWR0CT8UpuMuOCdX2UKGgGaAloD0MI9WbUfJVkTECUhpRSlGgVS+ZoFkdAk/FjUI9kjHV9lChoBmgJaA9DCA73kVuT5W5AlIaUUpRoFU1AAWgWR0CT84gzguRLdX2UKGgGaAloD0MIs193unOjZkCUhpRSlGgVTegDaBZHQJPzkZn+Q2d1fZQoaAZoCWgPQwgDtK1mHdxwQJSGlFKUaBVNGAFoFkdAk/Ou3MINVnV9lChoBmgJaA9DCHB31m57EHNAlIaUUpRoFU12AWgWR0CT9EojOcDsdX2UKGgGaAloD0MI83LYfUfZZ0CUhpRSlGgVTegDaBZHQJP0qbONYKZ1fZQoaAZoCWgPQwgjFcYWgg5CQJSGlFKUaBVNCwFoFkdAk/Xser+5v3V9lChoBmgJaA9DCA70UNuGF0RAlIaUUpRoFUvTaBZHQJP2EsFt8/l1fZQoaAZoCWgPQwh6yJQPgQJyQJSGlFKUaBVNRAFoFkdAk/Yc6FM7EHV9lChoBmgJaA9DCNb8+EuLVW9AlIaUUpRoFU1hAWgWR0CT9mNliBoVdX2UKGgGaAloD0MIzXNEvktNRUCUhpRSlGgVS9RoFkdAk/gBDst03nV9lChoBmgJaA9DCKg2OBH9WHBAlIaUUpRoFU02AWgWR0CT+R6RyOrAdX2UKGgGaAloD0MIFR3J5b/ockCUhpRSlGgVTScBaBZHQJP6pUOuq3p1fZQoaAZoCWgPQwgeiZen8/ltQJSGlFKUaBVNMQFoFkdAk/q5UHY6GXV9lChoBmgJaA9DCNcXCW250m9AlIaUUpRoFU1WAWgWR0CT+yf+S8radX2UKGgGaAloD0MI8u8zLpxkbECUhpRSlGgVTXIBaBZHQJP9IT0xubZ1fZQoaAZoCWgPQwgvTRHgdLFvQJSGlFKUaBVNMQFoFkdAk/1l4HHFP3V9lChoBmgJaA9DCAh3Z+02429AlIaUUpRoFU0uAWgWR0CT/hyT6i0wdX2UKGgGaAloD0MI6udNRSotbkCUhpRSlGgVTSQBaBZHQJP+NVFQVKx1fZQoaAZoCWgPQwhUU5J1+DpwQJSGlFKUaBVNWgFoFkdAk/7NutOmBXV9lChoBmgJaA9DCA1xrIvbH25AlIaUUpRoFU0tAWgWR0CT/+l2vB8AdX2UKGgGaAloD0MIG55eKYsAcUCUhpRSlGgVTS8BaBZHQJQAIIt16mh1fZQoaAZoCWgPQwgbuAN1ipZwQJSGlFKUaBVNNAFoFkdAlABXxBmf5HVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:17309ff303a4542b6ae13d8dbb2bebbf92f6f7a1e95932083a1dafcd304db238
3
+ size 147202
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fce24bdddc0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fce24bdde50>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fce24bddee0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fce24bddf70>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fce24be1040>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fce24be10d0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fce24be1160>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fce24be11f0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fce24be1280>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fce24be1310>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fce24be13a0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7fce24bdc510>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1672204805531212416,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIBQVT16iUM/7Ub9ve5Rjr59XOu8GbwdvQAAAAAAAAAA2qGRPYUXJD4D3e29cLmSvlvM1r3mvVU9AAAAAAAAAABz020+M0W5P/LhHj/6RLm+d9G4PqO1Dz4AAAAAAAAAACaglL3sMbk481gIOWMaBjRJSk076IgiuAAAgD8AAAAAOkAfPggnij9oyd87Nam+vj5kHz4uvH67AAAAAAAAAACzbli9vtvyPanyuTx7z3S+QIP9ut26Gb0AAAAAAAAAAIY5FT5SdYm7hkvxOn6/VrjvlMW8diQSugAAgD8AAIA/s6cAPR/dlbn+exk40XKSM5LHjDtEbTe3AACAPwAAgD9mMT29vB47P/WIo73XbY6+AuA7vUI0NbwAAAAAAAAAAM1oorvqphw+eN5cPf1rir6dS408VrCWvQAAAAAAAAAAmrtwPK4pt7oW/rE3JHOnMtU4BjoIccu2AACAPwAAgD9NCFm+3BHgPsX88D0R3z6+ZNwXPWb4rT0AAAAAAAAAAJr2UL32ZDi6gtVEOwHvbjjNmpW7yJnvuQAAgD8AAAAAc9faPX/8iz9LmeE9jZO6vsmaJj4yPui9AAAAAAAAAABAh8w9gIZLPyur/r0tbsm+Ndy2PAvdZL0AAAAAAAAAAM2UTb0Vm5Y/FxcMvi9p1b7KlNm9mPJnvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVcxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIJsYy/RI9bkCUhpRSlIwBbJRNNgGMAXSUR0CTlhxs2vSudX2UKGgGaAloD0MIXvI/+fvTcECUhpRSlGgVTWQBaBZHQJOrBVuJk5J1fZQoaAZoCWgPQwiq8Gd484RxQJSGlFKUaBVNCAFoFkdAk6tl9ORDC3V9lChoBmgJaA9DCLOVl/zPSnFAlIaUUpRoFU2QAWgWR0CTq7kC3gDSdX2UKGgGaAloD0MI/bs+c9a/RECUhpRSlGgVS/ZoFkdAk6vCCFsYVXV9lChoBmgJaA9DCGGlgooqWHFAlIaUUpRoFU0bAWgWR0CTrRY1He7+dX2UKGgGaAloD0MIx2MGKuO9b0CUhpRSlGgVTU8BaBZHQJOt3QPZqVR1fZQoaAZoCWgPQwhUrYVZaENvQJSGlFKUaBVNYwFoFkdAk651gc94eXV9lChoBmgJaA9DCOoihbIw1HJAlIaUUpRoFU0tAWgWR0CTrudFOO81dX2UKGgGaAloD0MIcjPcgM8cYECUhpRSlGgVTegDaBZHQJOvDHCGetl1fZQoaAZoCWgPQwi/1M+bipZCQJSGlFKUaBVL12gWR0CTr6BKcurZdX2UKGgGaAloD0MIo3TpX5LQR0CUhpRSlGgVS/ZoFkdAk6/Y3Ns3ynV9lChoBmgJaA9DCDaVRWEXjW9AlIaUUpRoFU07AWgWR0CTsHnrpqyodX2UKGgGaAloD0MI1m670BwGcUCUhpRSlGgVTVQBaBZHQJOy+Dcuand1fZQoaAZoCWgPQwjlKavpemttQJSGlFKUaBVNaAFoFkdAk7MHHJcPfHV9lChoBmgJaA9DCNcv2A1b1m5AlIaUUpRoFU0XAWgWR0CTs9+8oQWfdX2UKGgGaAloD0MIMnGrIIa/bUCUhpRSlGgVTVABaBZHQJO0YbdadMF1fZQoaAZoCWgPQwj6sx8pIvBuQJSGlFKUaBVNNgFoFkdAk7VPrGBFu3V9lChoBmgJaA9DCBoXDoQkZnBAlIaUUpRoFU0tAWgWR0CTtVgam4y5dX2UKGgGaAloD0MI1eqrq8J9cUCUhpRSlGgVTQwBaBZHQJO3qesgdOt1fZQoaAZoCWgPQwgB3gIJCt1wQJSGlFKUaBVNIgFoFkdAk7fEyLyc1HV9lChoBmgJaA9DCHIZNzVQA3FAlIaUUpRoFU1TAWgWR0CTuBOzIFNddX2UKGgGaAloD0MIL2r3q0CRcUCUhpRSlGgVTYEBaBZHQJO4MkmhM8J1fZQoaAZoCWgPQwi30JUIVIdxQJSGlFKUaBVNMQFoFkdAk7i/VVghKXV9lChoBmgJaA9DCBuhn6kXjHBAlIaUUpRoFU0lAWgWR0CTuWzqKP4mdX2UKGgGaAloD0MI6pWyDPErcUCUhpRSlGgVTW4BaBZHQJO5njZL7Gh1fZQoaAZoCWgPQwgfhlYnZwhtQJSGlFKUaBVNMAFoFkdAk7pdv0h/zHV9lChoBmgJaA9DCP+Tv3tH1FlAlIaUUpRoFU3oA2gWR0CTurQnQY1pdX2UKGgGaAloD0MIpu81BMencUCUhpRSlGgVTXIBaBZHQJO7bEFW4mV1fZQoaAZoCWgPQwgktOVcikNGQJSGlFKUaBVL4mgWR0CTu51rZamodX2UKGgGaAloD0MIGTvhJTjNUECUhpRSlGgVS/loFkdAk7vSfL9uP3V9lChoBmgJaA9DCHfYRGYuO3JAlIaUUpRoFU0ZAWgWR0CTu/lOGj9GdX2UKGgGaAloD0MIg9pv7UQFTkCUhpRSlGgVS8JoFkdAk708ZgogFHV9lChoBmgJaA9DCFvTvOOU+m9AlIaUUpRoFU1xAWgWR0CTvk09yLhrdX2UKGgGaAloD0MI1ArT9xrycECUhpRSlGgVTTIBaBZHQJO+gGbCrLh1fZQoaAZoCWgPQwi+M9qqJLIFQJSGlFKUaBVL6mgWR0CTv1ybhFVldX2UKGgGaAloD0MIlBeZgF/ScECUhpRSlGgVTRQBaBZHQJO/u2b5M111fZQoaAZoCWgPQwjKFkm7UW1tQJSGlFKUaBVNNwFoFkdAk8FKjJuEVXV9lChoBmgJaA9DCHLdlPKaDnBAlIaUUpRoFU0hAWgWR0CTwiZF5OafdX2UKGgGaAloD0MIFqQZiyZHbECUhpRSlGgVTVUBaBZHQJPCSXb/Ot51fZQoaAZoCWgPQwjfb7TjhutPQJSGlFKUaBVL62gWR0CTwwRPoFFEdX2UKGgGaAloD0MI8WjjiPWvckCUhpRSlGgVTUsBaBZHQJPDbUqhDgJ1fZQoaAZoCWgPQwjCFyZThT5xQJSGlFKUaBVNLQFoFkdAk8OGjXWe6XV9lChoBmgJaA9DCIrkK4GUimtAlIaUUpRoFU0eAWgWR0CTxNGm1pj+dX2UKGgGaAloD0MIeuBjsCL+cUCUhpRSlGgVTXABaBZHQJPGBn5BTn91fZQoaAZoCWgPQwgHYtnMoYhuQJSGlFKUaBVNZgFoFkdAk8a3AVO9FnV9lChoBmgJaA9DCGDoEaMnbHJAlIaUUpRoFU1wAWgWR0CTxtDOTq0MdX2UKGgGaAloD0MIPglszsHZckCUhpRSlGgVTVEBaBZHQJPII3++/QB1fZQoaAZoCWgPQwj7IqEt5+JMQJSGlFKUaBVLyGgWR0CTyL4BFNL2dX2UKGgGaAloD0MIiGTIsXVJb0CUhpRSlGgVTTsBaBZHQJPI3A8B+4N1fZQoaAZoCWgPQwgjLCridChxQJSGlFKUaBVNLQFoFkdAk8mzKkl/pnV9lChoBmgJaA9DCL9k48EWx0hAlIaUUpRoFUvcaBZHQJPKkq9XcQB1fZQoaAZoCWgPQwiHU+bm2/JwQJSGlFKUaBVNMAFoFkdAk96Qssg+yXV9lChoBmgJaA9DCDC45o6+EXJAlIaUUpRoFU0jAWgWR0CT3wCdjG1hdX2UKGgGaAloD0MI2NKjqV7ocUCUhpRSlGgVTTEBaBZHQJPgKGahHsl1fZQoaAZoCWgPQwjj++JSFVByQJSGlFKUaBVNSQFoFkdAk+FornTy8XV9lChoBmgJaA9DCPnaM0vC5XBAlIaUUpRoFU0VAWgWR0CT4oIl+mWMdX2UKGgGaAloD0MIW7BUF3AxbECUhpRSlGgVTT0BaBZHQJPioYht+Ct1fZQoaAZoCWgPQwhG66hqghg5QJSGlFKUaBVNBgFoFkdAk+RJ7HAAQ3V9lChoBmgJaA9DCP9Z8+Mvy2tAlIaUUpRoFU1PAWgWR0CT5W22oegddX2UKGgGaAloD0MIsi/ZeHCYcECUhpRSlGgVTV4BaBZHQJPmGwqy4Wl1fZQoaAZoCWgPQwhy+Q/pN0lvQJSGlFKUaBVNNgFoFkdAk+bq2v0ROHV9lChoBmgJaA9DCBsRjIPLq2xAlIaUUpRoFU0fAWgWR0CT5xGW2PT5dX2UKGgGaAloD0MIorWizXHjcECUhpRSlGgVTUoBaBZHQJPnh2gWac91fZQoaAZoCWgPQwg4LXjRF7JxQJSGlFKUaBVNLgFoFkdAk+i6p1ie/nV9lChoBmgJaA9DCAVPIVfqJFhAlIaUUpRoFU3oA2gWR0CT6Yay8jA0dX2UKGgGaAloD0MI9aJ2vwrMbkCUhpRSlGgVTTMBaBZHQJPpt+d9Ujt1fZQoaAZoCWgPQwjek4eFGhtxQJSGlFKUaBVNNwFoFkdAk+o0Yj0L+nV9lChoBmgJaA9DCDs42JsYx3FAlIaUUpRoFU0BAWgWR0CT6rFZgXuWdX2UKGgGaAloD0MIo3iVtU06cECUhpRSlGgVTTgBaBZHQJPrP961LJ11fZQoaAZoCWgPQwhWgzC3e91yQJSGlFKUaBVNJgFoFkdAk+zPS2H+InV9lChoBmgJaA9DCGk4ZW6+F1JAlIaUUpRoFUuraBZHQJPu1k1/DtR1fZQoaAZoCWgPQwgIH0q0pEtxQJSGlFKUaBVNBgFoFkdAk+7hG2Cul3V9lChoBmgJaA9DCCEiNe3iVHJAlIaUUpRoFU1TAWgWR0CT8AdrO7g9dX2UKGgGaAloD0MI2PLK9baPcUCUhpRSlGgVTSEBaBZHQJPw/JW/8EV1fZQoaAZoCWgPQwhWnGotjGdwQJSGlFKUaBVNUAFoFkdAk/Ec495hSnV9lChoBmgJaA9DCKabxCDw0XJAlIaUUpRoFU0tAWgWR0CT8UpuMuOCdX2UKGgGaAloD0MI9WbUfJVkTECUhpRSlGgVS+ZoFkdAk/FjUI9kjHV9lChoBmgJaA9DCA73kVuT5W5AlIaUUpRoFU1AAWgWR0CT84gzguRLdX2UKGgGaAloD0MIs193unOjZkCUhpRSlGgVTegDaBZHQJPzkZn+Q2d1fZQoaAZoCWgPQwgDtK1mHdxwQJSGlFKUaBVNGAFoFkdAk/Ou3MINVnV9lChoBmgJaA9DCHB31m57EHNAlIaUUpRoFU12AWgWR0CT9EojOcDsdX2UKGgGaAloD0MI83LYfUfZZ0CUhpRSlGgVTegDaBZHQJP0qbONYKZ1fZQoaAZoCWgPQwgjFcYWgg5CQJSGlFKUaBVNCwFoFkdAk/Xser+5v3V9lChoBmgJaA9DCA70UNuGF0RAlIaUUpRoFUvTaBZHQJP2EsFt8/l1fZQoaAZoCWgPQwh6yJQPgQJyQJSGlFKUaBVNRAFoFkdAk/Yc6FM7EHV9lChoBmgJaA9DCNb8+EuLVW9AlIaUUpRoFU1hAWgWR0CT9mNliBoVdX2UKGgGaAloD0MIzXNEvktNRUCUhpRSlGgVS9RoFkdAk/gBDst03nV9lChoBmgJaA9DCKg2OBH9WHBAlIaUUpRoFU02AWgWR0CT+R6RyOrAdX2UKGgGaAloD0MIFR3J5b/ockCUhpRSlGgVTScBaBZHQJP6pUOuq3p1fZQoaAZoCWgPQwgeiZen8/ltQJSGlFKUaBVNMQFoFkdAk/q5UHY6GXV9lChoBmgJaA9DCNcXCW250m9AlIaUUpRoFU1WAWgWR0CT+yf+S8radX2UKGgGaAloD0MI8u8zLpxkbECUhpRSlGgVTXIBaBZHQJP9IT0xubZ1fZQoaAZoCWgPQwgvTRHgdLFvQJSGlFKUaBVNMQFoFkdAk/1l4HHFP3V9lChoBmgJaA9DCAh3Z+02429AlIaUUpRoFU0uAWgWR0CT/hyT6i0wdX2UKGgGaAloD0MI6udNRSotbkCUhpRSlGgVTSQBaBZHQJP+NVFQVKx1fZQoaAZoCWgPQwhUU5J1+DpwQJSGlFKUaBVNWgFoFkdAk/7NutOmBXV9lChoBmgJaA9DCA1xrIvbH25AlIaUUpRoFU0tAWgWR0CT/+l2vB8AdX2UKGgGaAloD0MIG55eKYsAcUCUhpRSlGgVTS8BaBZHQJQAIIt16mh1fZQoaAZoCWgPQwgbuAN1ipZwQJSGlFKUaBVNNAFoFkdAlABXxBmf5HVlLg=="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 248,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9aaec6f4d975b1df6cc2dd990bcd29823ea16afd03ea3ee1436ef3b5557084be
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7ba525a205d8b1685c53e68f9182529f2dd086e0e3c4d0d810ac6b96c444b431
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.8.16
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0+cu116
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (217 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 247.92747912663873, "std_reward": 20.774054247747934, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-28T06:02:19.262861"}