Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
datasets:
|
| 3 |
+
- librispeech_asr
|
| 4 |
+
language:
|
| 5 |
+
- en
|
| 6 |
+
metrics:
|
| 7 |
+
- wer
|
| 8 |
+
tags:
|
| 9 |
+
- hubert
|
| 10 |
+
- tts
|
| 11 |
+
---
|
| 12 |
+
# voidful/mhubert-unit-tts
|
| 13 |
+
|
| 14 |
+
voidful/mhubert-unit-tts
|
| 15 |
+
|
| 16 |
+
This repository provides a text to unit model form mhubert and trained with bart model.
|
| 17 |
+
The model was trained on the LibriSpeech ASR dataset for the English language and
|
| 18 |
+
Train epoch 13: `WER:30.41` `CER: 20.22`
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
Hubert Code TTS Example
|
| 22 |
+
```python
|
| 23 |
+
import asrp
|
| 24 |
+
import nlp2
|
| 25 |
+
import IPython.display as ipd
|
| 26 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
| 27 |
+
nlp2.download_file(
|
| 28 |
+
'https://dl.fbaipublicfiles.com/fairseq/speech_to_speech/vocoder/code_hifigan/mhubert_vp_en_es_fr_it3_400k_layer11_km1000_lj/g_00500000',
|
| 29 |
+
'./')
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
tokenizer = AutoTokenizer.from_pretrained("voidful/mhubert-unit-tts")
|
| 33 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("voidful/mhubert-unit-tts")
|
| 34 |
+
model.eval()
|
| 35 |
+
cs = asrp.Code2Speech(tts_checkpoint='./g_00500000', vocoder='hifigan')
|
| 36 |
+
|
| 37 |
+
inputs = tokenizer(["The quick brown fox jumps over the lazy dog."], return_tensors="pt")
|
| 38 |
+
code = tokenizer.batch_decode(model.generate(**inputs,max_length=1024))[0]
|
| 39 |
+
code = [int(i) for i in code.replace("</s>","").replace("<s>","").split("v_tok_")[1:]]
|
| 40 |
+
print(code)
|
| 41 |
+
ipd.Audio(data=cs(code), autoplay=False, rate=cs.sample_rate)
|
| 42 |
+
```
|
| 43 |
+
|
| 44 |
+
Datasets
|
| 45 |
+
The model was trained on the LibriSpeech ASR dataset for the English language.
|
| 46 |
+
|
| 47 |
+
Language
|
| 48 |
+
The model is trained for the English language.
|
| 49 |
+
|
| 50 |
+
Metrics
|
| 51 |
+
The model's performance is evaluated using Word Error Rate (WER).
|
| 52 |
+
|
| 53 |
+
Tags
|
| 54 |
+
The model can be tagged with "hubert" and "tts".
|