{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fe56cf2b2d0>"}, "verbose": 0, "policy_kwargs": {":type:": "", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677273439820900929, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAD50AT+PL8i/lX4Uvw93bz/gIWK+jK3uvwhLFb61BM6+KIMfP+jVTb92m4e+zaSEwCIWHD4XjqE+ojzJvG/m0z9dyu28M2KHPyE0AD7BR/a/YS0Mv86YYb6aDWc/v0wqP/AdoL8fHhI/Vo0SwPhokL8RW4g/TjFRvkzLKT9auK0/9uE5v6ZJXD9eJA0/8VDQvouYCz8j04U/knvPPx/hMT5C2Bm/mZjpvxRJl7+n5jK/s9YcPIyYw79NNCC+aX0MPwbFGL+xDwY9UpVEv7Gnwz2Bpkw/Hx4SP8OX3z74aJC/tPRqPA90w74JFyA/S+Q9PpIEOz9xS+I+OZ53vsAIJDwAByU/FlMAvtpRUT1Ghvw+mSNDvzd96r5McuY8xSUMwGNzoD8giqe+3ULTvp1pMz9YlRi/sMoEPT8/Hz7/I/+/gaZMPx8eEj/Dl98++GiQv1QpET6PCW2+fcUoP96fcD8de5y/LRqBP+fIAL989jq/Dp+zvQw4RL+Nh06/ZO1DPW/yNL92VMQ/CR73PqVmjT+ror6+Po0MQFTqEz9TY00/VOcZv5jT8j296HM/qTA2P/AdoL8fHhI/Vo0SwNHoYj+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADxFXe2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAIku0vAAAAABVYPG/AAAAAORFsDwAAAAA5SLrPwAAAACzrtq9AAAAADIS4z8AAAAA9/mzPQAAAADgavi/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYh/9NAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgCjV/z0AAAAACFPZvwAAAAAWIQU+AAAAAGkR4z8AAAAAO2x4vAAAAADxI+s/AAAAAFYalbwAAAAAYanbvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALgrOrMAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICtX9m9AAAAAOcm678AAAAAVp60vQAAAAD+Auw/AAAAAATM3TwAAAAA0Z3aPwAAAAC9O089AAAAAKOH8b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAClewS1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAkhvnPQAAAABeqea/AAAAAEwTxz0AAAAAsPf6PwAAAAAfata8AAAAAD6D8z8AAAAAoG1MvAAAAAAA6ua/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJjmYnogV46MAWyUTegDjAF0lEdArJzIvpQk5nV9lChoBkdAmaVpyEL6UWgHTegDaAhHQKyfIHXVbzN1fZQoaAZHQJjr2XAuZkVoB03oA2gIR0CsoCxIatLddX2UKGgGR0CdS7BqKxcFaAdN6ANoCEdArKfHp0OmSHV9lChoBkdAnJrYrvsqrmgHTegDaAhHQKytZfvWpZR1fZQoaAZHQJ1S8ahpQDVoB03oA2gIR0Csr8K508vFdX2UKGgGR0CXBwLHdXT3aAdN6ANoCEdArLBtxXGOuXV9lChoBkdAl1TTtgKF7GgHTegDaAhHQKy1OYeDFqB1fZQoaAZHQJnptjQRf4RoB03oA2gIR0Csudz4DcM3dX2UKGgGR0Cbdt6j3225aAdN6ANoCEdArLwmtbLU1HV9lChoBkdAm4Wj/2kBS2gHTegDaAhHQKy804n4O+Z1fZQoaAZHQJ1dX6xgRbtoB03oA2gIR0Csw27zshPkdX2UKGgGR0CbFmFrEcbSaAdN6ANoCEdArMx4KF7D23V9lChoBkdAndfF1SwW32gHTegDaAhHQKzQYYKIBR11fZQoaAZHQJ5fCFGoaUBoB03oA2gIR0Cs0Y1BUrCndX2UKGgGR0CaVqu/UONHaAdN6ANoCEdArNauGEf1YnV9lChoBkdAnNY5+x4Y8GgHTegDaAhHQKzbdpSrHVB1fZQoaAZHQJ2+wdFOO81oB03oA2gIR0Cs3eYeT3ZgdX2UKGgGR0CcpTmvGIbgaAdN6ANoCEdArN7WPgeijHV9lChoBkdAnKewNkOI7GgHTegDaAhHQKzmjbBXS0B1fZQoaAZHQJ9VLM+u/1xoB03oA2gIR0Cs7H0qH447dX2UKGgGR0CfGiSSNfgKaAdN6ANoCEdArO7StT1kD3V9lChoBkdAnZN2qHXVb2gHTegDaAhHQKzvf5D7ZWd1fZQoaAZHQJ8CLmFJxvNoB03oA2gIR0Cs9D9si0OWdX2UKGgGR0CfUCRwIdELaAdN6ANoCEdArPj6t1ZDA3V9lChoBkdAnoV/ikwevWgHTegDaAhHQKz7U5p8F6l1fZQoaAZHQJ8UJDUmUnpoB03oA2gIR0Cs/Azq8lHCdX2UKGgGR0Cbvq92X9iuaAdN6ANoCEdArQKu/+Kjz3V9lChoBkdAnYgX3cpLEmgHTegDaAhHQK0Jy1JlJ6J1fZQoaAZHQJwuOb1AZ89oB03oA2gIR0CtDDuG0u14dX2UKGgGR0CfGFu9eyAyaAdN6ANoCEdArQzll2/zrnV9lChoBkdAoEHmt8uzyGgHTegDaAhHQK0RrrLQokR1fZQoaAZHQJ8U6O6unuRoB03oA2gIR0CtFmB6KLsKdX2UKGgGR0Cc+1pZwGW2aAdN6ANoCEdArRi7+ee4C3V9lChoBkdAn2OtI9TxXmgHTegDaAhHQK0Zb99c8kl1fZQoaAZHQJtJE51eSjhoB03oA2gIR0CtHuT2OAAidX2UKGgGR0Cfy88XvYvnaAdN6ANoCEdArSaXVurIYHV9lChoBkdAn2kSb6P8ymgHTegDaAhHQK0pcN1hb4d1fZQoaAZHQKCLTQb+98JoB03oA2gIR0CtKilJHy3DdX2UKGgGR0CgbVK28Zk1aAdN6ANoCEdArS8Aa1kUbnV9lChoBkdAnJ13wG4ZuWgHTegDaAhHQK0zwUs4DLd1fZQoaAZHQJ7lBsbedkJoB03oA2gIR0CtNiUse4kNdX2UKGgGR0CdiEwFC9h7aAdN6ANoCEdArTbQs3AEdXV9lChoBkdAnod2gFotc2gHTegDaAhHQK07o/Yao/B1fZQoaAZHQJ2TFooNNJxoB03oA2gIR0CtQv5lFtsOdX2UKGgGR0CeeQAh0QsgaAdN6ANoCEdArUboKc/dI3V9lChoBkdAnU4/Zdv862gHTegDaAhHQK1HzstTUAl1fZQoaAZHQJ5H+IP9UCJoB03oA2gIR0CtTK6kqMFVdX2UKGgGR0CVdg+6RQrMaAdN6ANoCEdArVFgx59mYnV9lChoBkdAnihoD9wWFmgHTegDaAhHQK1T0ji4rjJ1fZQoaAZHQJ4yMx/NJOFoB03oA2gIR0CtVH0KiO/+dX2UKGgGR0Ccb8X0Gu9waAdN6ANoCEdArVlUo4MnZ3V9lChoBkdAm3dZjlPrOmgHTegDaAhHQK1ftGI9C/p1fZQoaAZHQJx0yR9w3o9oB03oA2gIR0CtY6hY/3WXdX2UKGgGR0Cal0CAMDwIaAdN6ANoCEdArWTPeFcps3V9lChoBkdAm8LV76YVqWgHTegDaAhHQK1qkWznied1fZQoaAZHQJ/GbIJZ4fRoB03oA2gIR0Ctb1ajWTX8dX2UKGgGR0CfHSvbGm1qaAdN6ANoCEdArXHCzXz19XV9lChoBkdAnPCUfcN6PmgHTegDaAhHQK1yc5fdAPd1fZQoaAZHQJ0FagkC3gFoB03oA2gIR0Ctd1NP557gdX2UKGgGR0CddXCJXQt0aAdN6ANoCEdArXyqZc9nsnV9lChoBkdAnRPxJAdGRWgHTegDaAhHQK2AV43WFvh1fZQoaAZHQJ7RWViWmgtoB03oA2gIR0CtgXo4MnZ1dX2UKGgGR0CdlxZDArQPaAdN6ANoCEdArYg9ZDArQXV9lChoBkdAnSP7CemNzmgHTegDaAhHQK2NHSb6P811fZQoaAZHQJ3Sbkmx+rloB03oA2gIR0Ctj44jbBXTdX2UKGgGR0Cc2ovhIe5naAdN6ANoCEdArZBGwkgOjXV9lChoBkdAnPgrEcbR4WgHTegDaAhHQK2VLq4YrJ91fZQoaAZHQJxzNoIv8IloB03oA2gIR0CtmfA6uGKydX2UKGgGR0CfwfsPJ7swaAdN6ANoCEdArZ2YemvW6XV9lChoBkdAm6FycCo0h2gHTegDaAhHQK2erA3T/hl1fZQoaAZHQJ3oYh6jWTZoB03oA2gIR0CtpjZgw482dX2UKGgGR0CfMgO7QLNOaAdN6ANoCEdArasXxaxHG3V9lChoBkdAnZ/LaM72c2gHTegDaAhHQK2tgDIzWPN1fZQoaAZHQJ6JhPZZjhFoB03oA2gIR0CtrjTV+Zw5dX2UKGgGR0Cc8VEidJ8OaAdN6ANoCEdArbMbvoePrHV9lChoBkdAn3GCad+Xq2gHTegDaAhHQK237FXq7iB1fZQoaAZHQJvgKz7di2FoB03oA2gIR0Ctut1pblijdX2UKGgGR0Ce2UCNS619aAdN6ANoCEdArbv+U+s5n3V9lChoBkdAn4VFvl2eQWgHTegDaAhHQK3D+q+8Gs51fZQoaAZHQJzgpMURFqloB03oA2gIR0CtySp9qk/KdX2UKGgGR0CfQEKIBRyfaAdN6ANoCEdArcukM1CPZXV9lChoBkdAm2mhUipvP2gHTegDaAhHQK3MWmF8G9p1fZQoaAZHQJ6c8Qrc0tRoB03oA2gIR0Ct0UFVktmMdX2UKGgGR0CdHal/H5rQaAdN6ANoCEdArdYYXfqHGnV9lChoBkdAnhGQWBSUDGgHTegDaAhHQK3Ynlgc94h1fZQoaAZHQJ2IS5lOGj9oB03oA2gIR0Ct2chwuM/AdX2UKGgGR0Cc7jmuTzNEaAdN6ANoCEdAreFmsYEW7HV9lChoBkdAnZ/8unMt9WgHTegDaAhHQK3nBPIn0Cl1fZQoaAZHQJqcT4L1EmZoB03oA2gIR0Ct6VHNxEORdX2UKGgGR0Cd6rO1OTJRaAdN6ANoCEdAreoFDD0lJHV9lChoBkdAnTV3ZsbedmgHTegDaAhHQK3uy7aqS5l1fZQoaAZHQJnXJVhkRSRoB03oA2gIR0Ct8457ojfOdX2UKGgGR0CUK3fWMCLdaAdN6ANoCEdArfXnVZs9CHV9lChoBkdAnBVDQmeDnWgHTegDaAhHQK32kJrtVrB1fZQoaAZHQJn5duAI6bRoB03oA2gIR0Ct/XBS9/SZdX2UKGgGR0Cbhs9jgAIZaAdN6ANoCEdArgRrI3irDXV9lChoBkdAns+NRR/EwWgHTegDaAhHQK4Gx+RYA811fZQoaAZHQJ1g9KoQ4CJoB03oA2gIR0CuB3Wdd3SsdX2UKGgGR0CehqU9IPK/aAdN6ANoCEdArgxKIDYAbXVlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 100000, "n_steps": 5, "gamma": 0.98, "gae_lambda": 0.92, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": true, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}