--- library_name: transformers license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: results results: [] --- # results This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on Reddit social media dataset. It achieves the following results on the evaluation set: - Loss: 0.2235 - Accuracy: 0.9579 - F1: 0.9579 - Precision: 0.9580 - Recall: 0.9579 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.1672 | 1.0 | 543 | 0.2845 | 0.9280 | 0.9279 | 0.9329 | 0.9285 | | 0.2139 | 2.0 | 1086 | 0.2221 | 0.9439 | 0.9439 | 0.9447 | 0.9441 | | 0.1531 | 3.0 | 1629 | 0.2010 | 0.9523 | 0.9523 | 0.9526 | 0.9522 | | 0.0002 | 4.0 | 2172 | 0.2235 | 0.9579 | 0.9579 | 0.9580 | 0.9579 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.5.0+cu121 - Tokenizers 0.19.1