vineet10 commited on
Commit
94c6711
·
verified ·
1 Parent(s): a1b6e18

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,769 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: BAAI/bge-base-en-v1.5
3
+ datasets: []
4
+ language: []
5
+ library_name: sentence-transformers
6
+ metrics:
7
+ - cosine_accuracy@1
8
+ - cosine_accuracy@3
9
+ - cosine_accuracy@5
10
+ - cosine_accuracy@10
11
+ - cosine_precision@1
12
+ - cosine_precision@3
13
+ - cosine_precision@5
14
+ - cosine_precision@10
15
+ - cosine_recall@1
16
+ - cosine_recall@3
17
+ - cosine_recall@5
18
+ - cosine_recall@10
19
+ - cosine_ndcg@10
20
+ - cosine_mrr@10
21
+ - cosine_map@100
22
+ pipeline_tag: sentence-similarity
23
+ tags:
24
+ - sentence-transformers
25
+ - sentence-similarity
26
+ - feature-extraction
27
+ - generated_from_trainer
28
+ - dataset_size:48
29
+ - loss:MultipleNegativesRankingLoss
30
+ widget:
31
+ - source_sentence: The Supplier shall deliver the Batteries to the Manufacturer within
32
+ 5 days of receipt of each monthly purchase order.
33
+ sentences:
34
+ - What rights does the Manufacturer have regarding the inspection and rejection non-conforming
35
+ Batteries?
36
+ - What is the Delivery Schedule for the Batteries?
37
+ - What constitutes a force majeure event under the Agreement?
38
+ - source_sentence: The Client will pay a flat fee of Rs. 52,000/-, with 50% (Rs. 26,000/-)
39
+ due upon signing the agreement and the remaining 50% due one week after completion
40
+ of pre-production. Payment delays will result in proportional delays in data delivery
41
+ and editing.
42
+ sentences:
43
+ - What are the specified payment terms for the photography services under this contract?
44
+ - What actions can a user take if the platform is unable to fulfill a successfully
45
+ placed order?
46
+ - What is the delivery schedule for the Batteries once the purchase order is received?
47
+ - source_sentence: Users can contact Customer Care before confirmation to request
48
+ a refund for offline services or reschedule for online services, subject to the
49
+ platform's discretion.
50
+ sentences:
51
+ - How does Paratalks handle refund requests made before a service professional confirms
52
+ a booking?
53
+ - What is the total quantity of electric vehicle batteries that the Supplier agrees
54
+ to supply to the Manufacturer?
55
+ - What are the conditions under which a user is not entitled to a refund according
56
+ to Paratalks' refund policy?
57
+ - source_sentence: In the event of a material breach of this Agreement by either Party,
58
+ the non-breaching Party shall be entitled to pursue all available remedies at
59
+ law or in equity, including injunctive relief and damages.
60
+ sentences:
61
+ - Under what conditions may this agreement be terminated?
62
+ - What events constitute Force Majeure under this Agreement?
63
+ - What remedies are available to a non-breaching Party in the event of a material
64
+ breach of the Agreement?
65
+ - source_sentence: No refund shall be issued in case wrong contact details are provided
66
+ by the User or the User's device being unreachable, or any other technical glitch
67
+ attributable to the User. Additionally, no refund shall be issued for any live-session
68
+ or call, whether audio or video, once the call or live-session is connected.
69
+ sentences:
70
+ - What deductions may be applied when processing refunds according to Paratalks'
71
+ refund policy?
72
+ - What are the initial job title and duties of the Employee as stated in the employment
73
+ agreement?
74
+ - What circumstances lead to no refund being issued to a User according to the Refund
75
+ Policy?
76
+ model-index:
77
+ - name: SentenceTransformer based on BAAI/bge-base-en-v1.5
78
+ results:
79
+ - task:
80
+ type: information-retrieval
81
+ name: Information Retrieval
82
+ dataset:
83
+ name: dim 768
84
+ type: dim_768
85
+ metrics:
86
+ - type: cosine_accuracy@1
87
+ value: 0.3333333333333333
88
+ name: Cosine Accuracy@1
89
+ - type: cosine_accuracy@3
90
+ value: 1.0
91
+ name: Cosine Accuracy@3
92
+ - type: cosine_accuracy@5
93
+ value: 1.0
94
+ name: Cosine Accuracy@5
95
+ - type: cosine_accuracy@10
96
+ value: 1.0
97
+ name: Cosine Accuracy@10
98
+ - type: cosine_precision@1
99
+ value: 0.3333333333333333
100
+ name: Cosine Precision@1
101
+ - type: cosine_precision@3
102
+ value: 0.3333333333333333
103
+ name: Cosine Precision@3
104
+ - type: cosine_precision@5
105
+ value: 0.19999999999999998
106
+ name: Cosine Precision@5
107
+ - type: cosine_precision@10
108
+ value: 0.09999999999999999
109
+ name: Cosine Precision@10
110
+ - type: cosine_recall@1
111
+ value: 0.3333333333333333
112
+ name: Cosine Recall@1
113
+ - type: cosine_recall@3
114
+ value: 1.0
115
+ name: Cosine Recall@3
116
+ - type: cosine_recall@5
117
+ value: 1.0
118
+ name: Cosine Recall@5
119
+ - type: cosine_recall@10
120
+ value: 1.0
121
+ name: Cosine Recall@10
122
+ - type: cosine_ndcg@10
123
+ value: 0.7321315434523954
124
+ name: Cosine Ndcg@10
125
+ - type: cosine_mrr@10
126
+ value: 0.638888888888889
127
+ name: Cosine Mrr@10
128
+ - type: cosine_map@100
129
+ value: 0.638888888888889
130
+ name: Cosine Map@100
131
+ - task:
132
+ type: information-retrieval
133
+ name: Information Retrieval
134
+ dataset:
135
+ name: dim 512
136
+ type: dim_512
137
+ metrics:
138
+ - type: cosine_accuracy@1
139
+ value: 0.3333333333333333
140
+ name: Cosine Accuracy@1
141
+ - type: cosine_accuracy@3
142
+ value: 1.0
143
+ name: Cosine Accuracy@3
144
+ - type: cosine_accuracy@5
145
+ value: 1.0
146
+ name: Cosine Accuracy@5
147
+ - type: cosine_accuracy@10
148
+ value: 1.0
149
+ name: Cosine Accuracy@10
150
+ - type: cosine_precision@1
151
+ value: 0.3333333333333333
152
+ name: Cosine Precision@1
153
+ - type: cosine_precision@3
154
+ value: 0.3333333333333333
155
+ name: Cosine Precision@3
156
+ - type: cosine_precision@5
157
+ value: 0.19999999999999998
158
+ name: Cosine Precision@5
159
+ - type: cosine_precision@10
160
+ value: 0.09999999999999999
161
+ name: Cosine Precision@10
162
+ - type: cosine_recall@1
163
+ value: 0.3333333333333333
164
+ name: Cosine Recall@1
165
+ - type: cosine_recall@3
166
+ value: 1.0
167
+ name: Cosine Recall@3
168
+ - type: cosine_recall@5
169
+ value: 1.0
170
+ name: Cosine Recall@5
171
+ - type: cosine_recall@10
172
+ value: 1.0
173
+ name: Cosine Recall@10
174
+ - type: cosine_ndcg@10
175
+ value: 0.7321315434523954
176
+ name: Cosine Ndcg@10
177
+ - type: cosine_mrr@10
178
+ value: 0.638888888888889
179
+ name: Cosine Mrr@10
180
+ - type: cosine_map@100
181
+ value: 0.638888888888889
182
+ name: Cosine Map@100
183
+ - task:
184
+ type: information-retrieval
185
+ name: Information Retrieval
186
+ dataset:
187
+ name: dim 256
188
+ type: dim_256
189
+ metrics:
190
+ - type: cosine_accuracy@1
191
+ value: 0.5
192
+ name: Cosine Accuracy@1
193
+ - type: cosine_accuracy@3
194
+ value: 0.8333333333333334
195
+ name: Cosine Accuracy@3
196
+ - type: cosine_accuracy@5
197
+ value: 1.0
198
+ name: Cosine Accuracy@5
199
+ - type: cosine_accuracy@10
200
+ value: 1.0
201
+ name: Cosine Accuracy@10
202
+ - type: cosine_precision@1
203
+ value: 0.5
204
+ name: Cosine Precision@1
205
+ - type: cosine_precision@3
206
+ value: 0.27777777777777773
207
+ name: Cosine Precision@3
208
+ - type: cosine_precision@5
209
+ value: 0.19999999999999998
210
+ name: Cosine Precision@5
211
+ - type: cosine_precision@10
212
+ value: 0.09999999999999999
213
+ name: Cosine Precision@10
214
+ - type: cosine_recall@1
215
+ value: 0.5
216
+ name: Cosine Recall@1
217
+ - type: cosine_recall@3
218
+ value: 0.8333333333333334
219
+ name: Cosine Recall@3
220
+ - type: cosine_recall@5
221
+ value: 1.0
222
+ name: Cosine Recall@5
223
+ - type: cosine_recall@10
224
+ value: 1.0
225
+ name: Cosine Recall@10
226
+ - type: cosine_ndcg@10
227
+ value: 0.7747853857295762
228
+ name: Cosine Ndcg@10
229
+ - type: cosine_mrr@10
230
+ value: 0.7000000000000001
231
+ name: Cosine Mrr@10
232
+ - type: cosine_map@100
233
+ value: 0.7000000000000001
234
+ name: Cosine Map@100
235
+ - task:
236
+ type: information-retrieval
237
+ name: Information Retrieval
238
+ dataset:
239
+ name: dim 128
240
+ type: dim_128
241
+ metrics:
242
+ - type: cosine_accuracy@1
243
+ value: 0.5
244
+ name: Cosine Accuracy@1
245
+ - type: cosine_accuracy@3
246
+ value: 0.8333333333333334
247
+ name: Cosine Accuracy@3
248
+ - type: cosine_accuracy@5
249
+ value: 0.8333333333333334
250
+ name: Cosine Accuracy@5
251
+ - type: cosine_accuracy@10
252
+ value: 1.0
253
+ name: Cosine Accuracy@10
254
+ - type: cosine_precision@1
255
+ value: 0.5
256
+ name: Cosine Precision@1
257
+ - type: cosine_precision@3
258
+ value: 0.27777777777777773
259
+ name: Cosine Precision@3
260
+ - type: cosine_precision@5
261
+ value: 0.16666666666666666
262
+ name: Cosine Precision@5
263
+ - type: cosine_precision@10
264
+ value: 0.09999999999999999
265
+ name: Cosine Precision@10
266
+ - type: cosine_recall@1
267
+ value: 0.5
268
+ name: Cosine Recall@1
269
+ - type: cosine_recall@3
270
+ value: 0.8333333333333334
271
+ name: Cosine Recall@3
272
+ - type: cosine_recall@5
273
+ value: 0.8333333333333334
274
+ name: Cosine Recall@5
275
+ - type: cosine_recall@10
276
+ value: 1.0
277
+ name: Cosine Recall@10
278
+ - type: cosine_ndcg@10
279
+ value: 0.7604815838011495
280
+ name: Cosine Ndcg@10
281
+ - type: cosine_mrr@10
282
+ value: 0.6851851851851851
283
+ name: Cosine Mrr@10
284
+ - type: cosine_map@100
285
+ value: 0.6851851851851851
286
+ name: Cosine Map@100
287
+ - task:
288
+ type: information-retrieval
289
+ name: Information Retrieval
290
+ dataset:
291
+ name: dim 64
292
+ type: dim_64
293
+ metrics:
294
+ - type: cosine_accuracy@1
295
+ value: 0.5
296
+ name: Cosine Accuracy@1
297
+ - type: cosine_accuracy@3
298
+ value: 0.6666666666666666
299
+ name: Cosine Accuracy@3
300
+ - type: cosine_accuracy@5
301
+ value: 0.6666666666666666
302
+ name: Cosine Accuracy@5
303
+ - type: cosine_accuracy@10
304
+ value: 0.8333333333333334
305
+ name: Cosine Accuracy@10
306
+ - type: cosine_precision@1
307
+ value: 0.5
308
+ name: Cosine Precision@1
309
+ - type: cosine_precision@3
310
+ value: 0.2222222222222222
311
+ name: Cosine Precision@3
312
+ - type: cosine_precision@5
313
+ value: 0.13333333333333333
314
+ name: Cosine Precision@5
315
+ - type: cosine_precision@10
316
+ value: 0.08333333333333333
317
+ name: Cosine Precision@10
318
+ - type: cosine_recall@1
319
+ value: 0.5
320
+ name: Cosine Recall@1
321
+ - type: cosine_recall@3
322
+ value: 0.6666666666666666
323
+ name: Cosine Recall@3
324
+ - type: cosine_recall@5
325
+ value: 0.6666666666666666
326
+ name: Cosine Recall@5
327
+ - type: cosine_recall@10
328
+ value: 0.8333333333333334
329
+ name: Cosine Recall@10
330
+ - type: cosine_ndcg@10
331
+ value: 0.66452282344658
332
+ name: Cosine Ndcg@10
333
+ - type: cosine_mrr@10
334
+ value: 0.611111111111111
335
+ name: Cosine Mrr@10
336
+ - type: cosine_map@100
337
+ value: 0.6262626262626262
338
+ name: Cosine Map@100
339
+ ---
340
+
341
+ # SentenceTransformer based on BAAI/bge-base-en-v1.5
342
+
343
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
344
+
345
+ ## Model Details
346
+
347
+ ### Model Description
348
+ - **Model Type:** Sentence Transformer
349
+ - **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
350
+ - **Maximum Sequence Length:** 512 tokens
351
+ - **Output Dimensionality:** 768 tokens
352
+ - **Similarity Function:** Cosine Similarity
353
+ <!-- - **Training Dataset:** Unknown -->
354
+ <!-- - **Language:** Unknown -->
355
+ <!-- - **License:** Unknown -->
356
+
357
+ ### Model Sources
358
+
359
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
360
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
361
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
362
+
363
+ ### Full Model Architecture
364
+
365
+ ```
366
+ SentenceTransformer(
367
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
368
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
369
+ (2): Normalize()
370
+ )
371
+ ```
372
+
373
+ ## Usage
374
+
375
+ ### Direct Usage (Sentence Transformers)
376
+
377
+ First install the Sentence Transformers library:
378
+
379
+ ```bash
380
+ pip install -U sentence-transformers
381
+ ```
382
+
383
+ Then you can load this model and run inference.
384
+ ```python
385
+ from sentence_transformers import SentenceTransformer
386
+
387
+ # Download from the 🤗 Hub
388
+ model = SentenceTransformer("vineet10/fm2")
389
+ # Run inference
390
+ sentences = [
391
+ "No refund shall be issued in case wrong contact details are provided by the User or the User's device being unreachable, or any other technical glitch attributable to the User. Additionally, no refund shall be issued for any live-session or call, whether audio or video, once the call or live-session is connected.",
392
+ 'What circumstances lead to no refund being issued to a User according to the Refund Policy?',
393
+ 'What are the initial job title and duties of the Employee as stated in the employment agreement?',
394
+ ]
395
+ embeddings = model.encode(sentences)
396
+ print(embeddings.shape)
397
+ # [3, 768]
398
+
399
+ # Get the similarity scores for the embeddings
400
+ similarities = model.similarity(embeddings, embeddings)
401
+ print(similarities.shape)
402
+ # [3, 3]
403
+ ```
404
+
405
+ <!--
406
+ ### Direct Usage (Transformers)
407
+
408
+ <details><summary>Click to see the direct usage in Transformers</summary>
409
+
410
+ </details>
411
+ -->
412
+
413
+ <!--
414
+ ### Downstream Usage (Sentence Transformers)
415
+
416
+ You can finetune this model on your own dataset.
417
+
418
+ <details><summary>Click to expand</summary>
419
+
420
+ </details>
421
+ -->
422
+
423
+ <!--
424
+ ### Out-of-Scope Use
425
+
426
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
427
+ -->
428
+
429
+ ## Evaluation
430
+
431
+ ### Metrics
432
+
433
+ #### Information Retrieval
434
+ * Dataset: `dim_768`
435
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
436
+
437
+ | Metric | Value |
438
+ |:--------------------|:-----------|
439
+ | cosine_accuracy@1 | 0.3333 |
440
+ | cosine_accuracy@3 | 1.0 |
441
+ | cosine_accuracy@5 | 1.0 |
442
+ | cosine_accuracy@10 | 1.0 |
443
+ | cosine_precision@1 | 0.3333 |
444
+ | cosine_precision@3 | 0.3333 |
445
+ | cosine_precision@5 | 0.2 |
446
+ | cosine_precision@10 | 0.1 |
447
+ | cosine_recall@1 | 0.3333 |
448
+ | cosine_recall@3 | 1.0 |
449
+ | cosine_recall@5 | 1.0 |
450
+ | cosine_recall@10 | 1.0 |
451
+ | cosine_ndcg@10 | 0.7321 |
452
+ | cosine_mrr@10 | 0.6389 |
453
+ | **cosine_map@100** | **0.6389** |
454
+
455
+ #### Information Retrieval
456
+ * Dataset: `dim_512`
457
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
458
+
459
+ | Metric | Value |
460
+ |:--------------------|:-----------|
461
+ | cosine_accuracy@1 | 0.3333 |
462
+ | cosine_accuracy@3 | 1.0 |
463
+ | cosine_accuracy@5 | 1.0 |
464
+ | cosine_accuracy@10 | 1.0 |
465
+ | cosine_precision@1 | 0.3333 |
466
+ | cosine_precision@3 | 0.3333 |
467
+ | cosine_precision@5 | 0.2 |
468
+ | cosine_precision@10 | 0.1 |
469
+ | cosine_recall@1 | 0.3333 |
470
+ | cosine_recall@3 | 1.0 |
471
+ | cosine_recall@5 | 1.0 |
472
+ | cosine_recall@10 | 1.0 |
473
+ | cosine_ndcg@10 | 0.7321 |
474
+ | cosine_mrr@10 | 0.6389 |
475
+ | **cosine_map@100** | **0.6389** |
476
+
477
+ #### Information Retrieval
478
+ * Dataset: `dim_256`
479
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
480
+
481
+ | Metric | Value |
482
+ |:--------------------|:--------|
483
+ | cosine_accuracy@1 | 0.5 |
484
+ | cosine_accuracy@3 | 0.8333 |
485
+ | cosine_accuracy@5 | 1.0 |
486
+ | cosine_accuracy@10 | 1.0 |
487
+ | cosine_precision@1 | 0.5 |
488
+ | cosine_precision@3 | 0.2778 |
489
+ | cosine_precision@5 | 0.2 |
490
+ | cosine_precision@10 | 0.1 |
491
+ | cosine_recall@1 | 0.5 |
492
+ | cosine_recall@3 | 0.8333 |
493
+ | cosine_recall@5 | 1.0 |
494
+ | cosine_recall@10 | 1.0 |
495
+ | cosine_ndcg@10 | 0.7748 |
496
+ | cosine_mrr@10 | 0.7 |
497
+ | **cosine_map@100** | **0.7** |
498
+
499
+ #### Information Retrieval
500
+ * Dataset: `dim_128`
501
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
502
+
503
+ | Metric | Value |
504
+ |:--------------------|:-----------|
505
+ | cosine_accuracy@1 | 0.5 |
506
+ | cosine_accuracy@3 | 0.8333 |
507
+ | cosine_accuracy@5 | 0.8333 |
508
+ | cosine_accuracy@10 | 1.0 |
509
+ | cosine_precision@1 | 0.5 |
510
+ | cosine_precision@3 | 0.2778 |
511
+ | cosine_precision@5 | 0.1667 |
512
+ | cosine_precision@10 | 0.1 |
513
+ | cosine_recall@1 | 0.5 |
514
+ | cosine_recall@3 | 0.8333 |
515
+ | cosine_recall@5 | 0.8333 |
516
+ | cosine_recall@10 | 1.0 |
517
+ | cosine_ndcg@10 | 0.7605 |
518
+ | cosine_mrr@10 | 0.6852 |
519
+ | **cosine_map@100** | **0.6852** |
520
+
521
+ #### Information Retrieval
522
+ * Dataset: `dim_64`
523
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
524
+
525
+ | Metric | Value |
526
+ |:--------------------|:-----------|
527
+ | cosine_accuracy@1 | 0.5 |
528
+ | cosine_accuracy@3 | 0.6667 |
529
+ | cosine_accuracy@5 | 0.6667 |
530
+ | cosine_accuracy@10 | 0.8333 |
531
+ | cosine_precision@1 | 0.5 |
532
+ | cosine_precision@3 | 0.2222 |
533
+ | cosine_precision@5 | 0.1333 |
534
+ | cosine_precision@10 | 0.0833 |
535
+ | cosine_recall@1 | 0.5 |
536
+ | cosine_recall@3 | 0.6667 |
537
+ | cosine_recall@5 | 0.6667 |
538
+ | cosine_recall@10 | 0.8333 |
539
+ | cosine_ndcg@10 | 0.6645 |
540
+ | cosine_mrr@10 | 0.6111 |
541
+ | **cosine_map@100** | **0.6263** |
542
+
543
+ <!--
544
+ ## Bias, Risks and Limitations
545
+
546
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
547
+ -->
548
+
549
+ <!--
550
+ ### Recommendations
551
+
552
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
553
+ -->
554
+
555
+ ## Training Details
556
+
557
+ ### Training Dataset
558
+
559
+ #### Unnamed Dataset
560
+
561
+
562
+ * Size: 48 training samples
563
+ * Columns: <code>context</code> and <code>question</code>
564
+ * Approximate statistics based on the first 1000 samples:
565
+ | | context | question |
566
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
567
+ | type | string | string |
568
+ | details | <ul><li>min: 18 tokens</li><li>mean: 41.0 tokens</li><li>max: 85 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 17.88 tokens</li><li>max: 32 tokens</li></ul> |
569
+ * Samples:
570
+ | context | question |
571
+ |:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------|
572
+ | <code>The contract is governed by the laws of India, and any disputes shall be resolved exclusively by the courts in Kota.</code> | <code>What is the jurisdiction and governing law applicable to this contract?</code> |
573
+ | <code>The Parties shall maintain the confidentiality of all proprietary and confidential information disclosed by one Party to the other Party in connection with this Agreement.</code> | <code>How should proprietary and confidential information disclosed under the Agreement be treated by the Parties?</code> |
574
+ | <code>No refund shall be provided for any products or merchandise that is purchased by the User from or through the Platform.</code> | <code>What is the refund policy for products or merchandise purchased by the User through the Platform?</code> |
575
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
576
+ ```json
577
+ {
578
+ "scale": 20.0,
579
+ "similarity_fct": "cos_sim"
580
+ }
581
+ ```
582
+
583
+ ### Training Hyperparameters
584
+ #### Non-Default Hyperparameters
585
+
586
+ - `eval_strategy`: steps
587
+ - `per_device_train_batch_size`: 16
588
+ - `per_device_eval_batch_size`: 16
589
+ - `num_train_epochs`: 5
590
+ - `warmup_ratio`: 0.1
591
+ - `fp16`: True
592
+ - `batch_sampler`: no_duplicates
593
+
594
+ #### All Hyperparameters
595
+ <details><summary>Click to expand</summary>
596
+
597
+ - `overwrite_output_dir`: False
598
+ - `do_predict`: False
599
+ - `eval_strategy`: steps
600
+ - `prediction_loss_only`: True
601
+ - `per_device_train_batch_size`: 16
602
+ - `per_device_eval_batch_size`: 16
603
+ - `per_gpu_train_batch_size`: None
604
+ - `per_gpu_eval_batch_size`: None
605
+ - `gradient_accumulation_steps`: 1
606
+ - `eval_accumulation_steps`: None
607
+ - `learning_rate`: 5e-05
608
+ - `weight_decay`: 0.0
609
+ - `adam_beta1`: 0.9
610
+ - `adam_beta2`: 0.999
611
+ - `adam_epsilon`: 1e-08
612
+ - `max_grad_norm`: 1.0
613
+ - `num_train_epochs`: 5
614
+ - `max_steps`: -1
615
+ - `lr_scheduler_type`: linear
616
+ - `lr_scheduler_kwargs`: {}
617
+ - `warmup_ratio`: 0.1
618
+ - `warmup_steps`: 0
619
+ - `log_level`: passive
620
+ - `log_level_replica`: warning
621
+ - `log_on_each_node`: True
622
+ - `logging_nan_inf_filter`: True
623
+ - `save_safetensors`: True
624
+ - `save_on_each_node`: False
625
+ - `save_only_model`: False
626
+ - `restore_callback_states_from_checkpoint`: False
627
+ - `no_cuda`: False
628
+ - `use_cpu`: False
629
+ - `use_mps_device`: False
630
+ - `seed`: 42
631
+ - `data_seed`: None
632
+ - `jit_mode_eval`: False
633
+ - `use_ipex`: False
634
+ - `bf16`: False
635
+ - `fp16`: True
636
+ - `fp16_opt_level`: O1
637
+ - `half_precision_backend`: auto
638
+ - `bf16_full_eval`: False
639
+ - `fp16_full_eval`: False
640
+ - `tf32`: None
641
+ - `local_rank`: 0
642
+ - `ddp_backend`: None
643
+ - `tpu_num_cores`: None
644
+ - `tpu_metrics_debug`: False
645
+ - `debug`: []
646
+ - `dataloader_drop_last`: False
647
+ - `dataloader_num_workers`: 0
648
+ - `dataloader_prefetch_factor`: None
649
+ - `past_index`: -1
650
+ - `disable_tqdm`: False
651
+ - `remove_unused_columns`: True
652
+ - `label_names`: None
653
+ - `load_best_model_at_end`: False
654
+ - `ignore_data_skip`: False
655
+ - `fsdp`: []
656
+ - `fsdp_min_num_params`: 0
657
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
658
+ - `fsdp_transformer_layer_cls_to_wrap`: None
659
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
660
+ - `deepspeed`: None
661
+ - `label_smoothing_factor`: 0.0
662
+ - `optim`: adamw_torch
663
+ - `optim_args`: None
664
+ - `adafactor`: False
665
+ - `group_by_length`: False
666
+ - `length_column_name`: length
667
+ - `ddp_find_unused_parameters`: None
668
+ - `ddp_bucket_cap_mb`: None
669
+ - `ddp_broadcast_buffers`: False
670
+ - `dataloader_pin_memory`: True
671
+ - `dataloader_persistent_workers`: False
672
+ - `skip_memory_metrics`: True
673
+ - `use_legacy_prediction_loop`: False
674
+ - `push_to_hub`: False
675
+ - `resume_from_checkpoint`: None
676
+ - `hub_model_id`: None
677
+ - `hub_strategy`: every_save
678
+ - `hub_private_repo`: False
679
+ - `hub_always_push`: False
680
+ - `gradient_checkpointing`: False
681
+ - `gradient_checkpointing_kwargs`: None
682
+ - `include_inputs_for_metrics`: False
683
+ - `eval_do_concat_batches`: True
684
+ - `fp16_backend`: auto
685
+ - `push_to_hub_model_id`: None
686
+ - `push_to_hub_organization`: None
687
+ - `mp_parameters`:
688
+ - `auto_find_batch_size`: False
689
+ - `full_determinism`: False
690
+ - `torchdynamo`: None
691
+ - `ray_scope`: last
692
+ - `ddp_timeout`: 1800
693
+ - `torch_compile`: False
694
+ - `torch_compile_backend`: None
695
+ - `torch_compile_mode`: None
696
+ - `dispatch_batches`: None
697
+ - `split_batches`: None
698
+ - `include_tokens_per_second`: False
699
+ - `include_num_input_tokens_seen`: False
700
+ - `neftune_noise_alpha`: None
701
+ - `optim_target_modules`: None
702
+ - `batch_eval_metrics`: False
703
+ - `eval_on_start`: False
704
+ - `batch_sampler`: no_duplicates
705
+ - `multi_dataset_batch_sampler`: proportional
706
+
707
+ </details>
708
+
709
+ ### Training Logs
710
+ | Epoch | Step | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
711
+ |:-----:|:----:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
712
+ | 0 | 0 | 0.6852 | 0.7000 | 0.6389 | 0.6263 | 0.6389 |
713
+
714
+
715
+ ### Framework Versions
716
+ - Python: 3.10.12
717
+ - Sentence Transformers: 3.0.1
718
+ - Transformers: 4.42.4
719
+ - PyTorch: 2.3.1+cu121
720
+ - Accelerate: 0.32.1
721
+ - Datasets: 2.20.0
722
+ - Tokenizers: 0.19.1
723
+
724
+ ## Citation
725
+
726
+ ### BibTeX
727
+
728
+ #### Sentence Transformers
729
+ ```bibtex
730
+ @inproceedings{reimers-2019-sentence-bert,
731
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
732
+ author = "Reimers, Nils and Gurevych, Iryna",
733
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
734
+ month = "11",
735
+ year = "2019",
736
+ publisher = "Association for Computational Linguistics",
737
+ url = "https://arxiv.org/abs/1908.10084",
738
+ }
739
+ ```
740
+
741
+ #### MultipleNegativesRankingLoss
742
+ ```bibtex
743
+ @misc{henderson2017efficient,
744
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
745
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
746
+ year={2017},
747
+ eprint={1705.00652},
748
+ archivePrefix={arXiv},
749
+ primaryClass={cs.CL}
750
+ }
751
+ ```
752
+
753
+ <!--
754
+ ## Glossary
755
+
756
+ *Clearly define terms in order to be accessible across audiences.*
757
+ -->
758
+
759
+ <!--
760
+ ## Model Card Authors
761
+
762
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
763
+ -->
764
+
765
+ <!--
766
+ ## Model Card Contact
767
+
768
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
769
+ -->
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "BAAI/bge-base-en-v1.5",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "id2label": {
13
+ "0": "LABEL_0"
14
+ },
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 3072,
17
+ "label2id": {
18
+ "LABEL_0": 0
19
+ },
20
+ "layer_norm_eps": 1e-12,
21
+ "max_position_embeddings": 512,
22
+ "model_type": "bert",
23
+ "num_attention_heads": 12,
24
+ "num_hidden_layers": 12,
25
+ "pad_token_id": 0,
26
+ "position_embedding_type": "absolute",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.42.4",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 30522
32
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.42.4",
5
+ "pytorch": "2.3.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7d250e1f2e390a5a022a9198633ebc9072d74f0cb183ac152adc95fd16177ff3
3
+ size 437951328
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff