Add new SentenceTransformer model.
Browse files- 1_Pooling/config.json +10 -0
- README.md +769 -0
- config.json +32 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +57 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": true,
|
4 |
+
"pooling_mode_mean_tokens": false,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,769 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: BAAI/bge-base-en-v1.5
|
3 |
+
datasets: []
|
4 |
+
language: []
|
5 |
+
library_name: sentence-transformers
|
6 |
+
metrics:
|
7 |
+
- cosine_accuracy@1
|
8 |
+
- cosine_accuracy@3
|
9 |
+
- cosine_accuracy@5
|
10 |
+
- cosine_accuracy@10
|
11 |
+
- cosine_precision@1
|
12 |
+
- cosine_precision@3
|
13 |
+
- cosine_precision@5
|
14 |
+
- cosine_precision@10
|
15 |
+
- cosine_recall@1
|
16 |
+
- cosine_recall@3
|
17 |
+
- cosine_recall@5
|
18 |
+
- cosine_recall@10
|
19 |
+
- cosine_ndcg@10
|
20 |
+
- cosine_mrr@10
|
21 |
+
- cosine_map@100
|
22 |
+
pipeline_tag: sentence-similarity
|
23 |
+
tags:
|
24 |
+
- sentence-transformers
|
25 |
+
- sentence-similarity
|
26 |
+
- feature-extraction
|
27 |
+
- generated_from_trainer
|
28 |
+
- dataset_size:48
|
29 |
+
- loss:MultipleNegativesRankingLoss
|
30 |
+
widget:
|
31 |
+
- source_sentence: The Supplier shall deliver the Batteries to the Manufacturer within
|
32 |
+
5 days of receipt of each monthly purchase order.
|
33 |
+
sentences:
|
34 |
+
- What rights does the Manufacturer have regarding the inspection and rejection non-conforming
|
35 |
+
Batteries?
|
36 |
+
- What is the Delivery Schedule for the Batteries?
|
37 |
+
- What constitutes a force majeure event under the Agreement?
|
38 |
+
- source_sentence: The Client will pay a flat fee of Rs. 52,000/-, with 50% (Rs. 26,000/-)
|
39 |
+
due upon signing the agreement and the remaining 50% due one week after completion
|
40 |
+
of pre-production. Payment delays will result in proportional delays in data delivery
|
41 |
+
and editing.
|
42 |
+
sentences:
|
43 |
+
- What are the specified payment terms for the photography services under this contract?
|
44 |
+
- What actions can a user take if the platform is unable to fulfill a successfully
|
45 |
+
placed order?
|
46 |
+
- What is the delivery schedule for the Batteries once the purchase order is received?
|
47 |
+
- source_sentence: Users can contact Customer Care before confirmation to request
|
48 |
+
a refund for offline services or reschedule for online services, subject to the
|
49 |
+
platform's discretion.
|
50 |
+
sentences:
|
51 |
+
- How does Paratalks handle refund requests made before a service professional confirms
|
52 |
+
a booking?
|
53 |
+
- What is the total quantity of electric vehicle batteries that the Supplier agrees
|
54 |
+
to supply to the Manufacturer?
|
55 |
+
- What are the conditions under which a user is not entitled to a refund according
|
56 |
+
to Paratalks' refund policy?
|
57 |
+
- source_sentence: In the event of a material breach of this Agreement by either Party,
|
58 |
+
the non-breaching Party shall be entitled to pursue all available remedies at
|
59 |
+
law or in equity, including injunctive relief and damages.
|
60 |
+
sentences:
|
61 |
+
- Under what conditions may this agreement be terminated?
|
62 |
+
- What events constitute Force Majeure under this Agreement?
|
63 |
+
- What remedies are available to a non-breaching Party in the event of a material
|
64 |
+
breach of the Agreement?
|
65 |
+
- source_sentence: No refund shall be issued in case wrong contact details are provided
|
66 |
+
by the User or the User's device being unreachable, or any other technical glitch
|
67 |
+
attributable to the User. Additionally, no refund shall be issued for any live-session
|
68 |
+
or call, whether audio or video, once the call or live-session is connected.
|
69 |
+
sentences:
|
70 |
+
- What deductions may be applied when processing refunds according to Paratalks'
|
71 |
+
refund policy?
|
72 |
+
- What are the initial job title and duties of the Employee as stated in the employment
|
73 |
+
agreement?
|
74 |
+
- What circumstances lead to no refund being issued to a User according to the Refund
|
75 |
+
Policy?
|
76 |
+
model-index:
|
77 |
+
- name: SentenceTransformer based on BAAI/bge-base-en-v1.5
|
78 |
+
results:
|
79 |
+
- task:
|
80 |
+
type: information-retrieval
|
81 |
+
name: Information Retrieval
|
82 |
+
dataset:
|
83 |
+
name: dim 768
|
84 |
+
type: dim_768
|
85 |
+
metrics:
|
86 |
+
- type: cosine_accuracy@1
|
87 |
+
value: 0.3333333333333333
|
88 |
+
name: Cosine Accuracy@1
|
89 |
+
- type: cosine_accuracy@3
|
90 |
+
value: 1.0
|
91 |
+
name: Cosine Accuracy@3
|
92 |
+
- type: cosine_accuracy@5
|
93 |
+
value: 1.0
|
94 |
+
name: Cosine Accuracy@5
|
95 |
+
- type: cosine_accuracy@10
|
96 |
+
value: 1.0
|
97 |
+
name: Cosine Accuracy@10
|
98 |
+
- type: cosine_precision@1
|
99 |
+
value: 0.3333333333333333
|
100 |
+
name: Cosine Precision@1
|
101 |
+
- type: cosine_precision@3
|
102 |
+
value: 0.3333333333333333
|
103 |
+
name: Cosine Precision@3
|
104 |
+
- type: cosine_precision@5
|
105 |
+
value: 0.19999999999999998
|
106 |
+
name: Cosine Precision@5
|
107 |
+
- type: cosine_precision@10
|
108 |
+
value: 0.09999999999999999
|
109 |
+
name: Cosine Precision@10
|
110 |
+
- type: cosine_recall@1
|
111 |
+
value: 0.3333333333333333
|
112 |
+
name: Cosine Recall@1
|
113 |
+
- type: cosine_recall@3
|
114 |
+
value: 1.0
|
115 |
+
name: Cosine Recall@3
|
116 |
+
- type: cosine_recall@5
|
117 |
+
value: 1.0
|
118 |
+
name: Cosine Recall@5
|
119 |
+
- type: cosine_recall@10
|
120 |
+
value: 1.0
|
121 |
+
name: Cosine Recall@10
|
122 |
+
- type: cosine_ndcg@10
|
123 |
+
value: 0.7321315434523954
|
124 |
+
name: Cosine Ndcg@10
|
125 |
+
- type: cosine_mrr@10
|
126 |
+
value: 0.638888888888889
|
127 |
+
name: Cosine Mrr@10
|
128 |
+
- type: cosine_map@100
|
129 |
+
value: 0.638888888888889
|
130 |
+
name: Cosine Map@100
|
131 |
+
- task:
|
132 |
+
type: information-retrieval
|
133 |
+
name: Information Retrieval
|
134 |
+
dataset:
|
135 |
+
name: dim 512
|
136 |
+
type: dim_512
|
137 |
+
metrics:
|
138 |
+
- type: cosine_accuracy@1
|
139 |
+
value: 0.3333333333333333
|
140 |
+
name: Cosine Accuracy@1
|
141 |
+
- type: cosine_accuracy@3
|
142 |
+
value: 1.0
|
143 |
+
name: Cosine Accuracy@3
|
144 |
+
- type: cosine_accuracy@5
|
145 |
+
value: 1.0
|
146 |
+
name: Cosine Accuracy@5
|
147 |
+
- type: cosine_accuracy@10
|
148 |
+
value: 1.0
|
149 |
+
name: Cosine Accuracy@10
|
150 |
+
- type: cosine_precision@1
|
151 |
+
value: 0.3333333333333333
|
152 |
+
name: Cosine Precision@1
|
153 |
+
- type: cosine_precision@3
|
154 |
+
value: 0.3333333333333333
|
155 |
+
name: Cosine Precision@3
|
156 |
+
- type: cosine_precision@5
|
157 |
+
value: 0.19999999999999998
|
158 |
+
name: Cosine Precision@5
|
159 |
+
- type: cosine_precision@10
|
160 |
+
value: 0.09999999999999999
|
161 |
+
name: Cosine Precision@10
|
162 |
+
- type: cosine_recall@1
|
163 |
+
value: 0.3333333333333333
|
164 |
+
name: Cosine Recall@1
|
165 |
+
- type: cosine_recall@3
|
166 |
+
value: 1.0
|
167 |
+
name: Cosine Recall@3
|
168 |
+
- type: cosine_recall@5
|
169 |
+
value: 1.0
|
170 |
+
name: Cosine Recall@5
|
171 |
+
- type: cosine_recall@10
|
172 |
+
value: 1.0
|
173 |
+
name: Cosine Recall@10
|
174 |
+
- type: cosine_ndcg@10
|
175 |
+
value: 0.7321315434523954
|
176 |
+
name: Cosine Ndcg@10
|
177 |
+
- type: cosine_mrr@10
|
178 |
+
value: 0.638888888888889
|
179 |
+
name: Cosine Mrr@10
|
180 |
+
- type: cosine_map@100
|
181 |
+
value: 0.638888888888889
|
182 |
+
name: Cosine Map@100
|
183 |
+
- task:
|
184 |
+
type: information-retrieval
|
185 |
+
name: Information Retrieval
|
186 |
+
dataset:
|
187 |
+
name: dim 256
|
188 |
+
type: dim_256
|
189 |
+
metrics:
|
190 |
+
- type: cosine_accuracy@1
|
191 |
+
value: 0.5
|
192 |
+
name: Cosine Accuracy@1
|
193 |
+
- type: cosine_accuracy@3
|
194 |
+
value: 0.8333333333333334
|
195 |
+
name: Cosine Accuracy@3
|
196 |
+
- type: cosine_accuracy@5
|
197 |
+
value: 1.0
|
198 |
+
name: Cosine Accuracy@5
|
199 |
+
- type: cosine_accuracy@10
|
200 |
+
value: 1.0
|
201 |
+
name: Cosine Accuracy@10
|
202 |
+
- type: cosine_precision@1
|
203 |
+
value: 0.5
|
204 |
+
name: Cosine Precision@1
|
205 |
+
- type: cosine_precision@3
|
206 |
+
value: 0.27777777777777773
|
207 |
+
name: Cosine Precision@3
|
208 |
+
- type: cosine_precision@5
|
209 |
+
value: 0.19999999999999998
|
210 |
+
name: Cosine Precision@5
|
211 |
+
- type: cosine_precision@10
|
212 |
+
value: 0.09999999999999999
|
213 |
+
name: Cosine Precision@10
|
214 |
+
- type: cosine_recall@1
|
215 |
+
value: 0.5
|
216 |
+
name: Cosine Recall@1
|
217 |
+
- type: cosine_recall@3
|
218 |
+
value: 0.8333333333333334
|
219 |
+
name: Cosine Recall@3
|
220 |
+
- type: cosine_recall@5
|
221 |
+
value: 1.0
|
222 |
+
name: Cosine Recall@5
|
223 |
+
- type: cosine_recall@10
|
224 |
+
value: 1.0
|
225 |
+
name: Cosine Recall@10
|
226 |
+
- type: cosine_ndcg@10
|
227 |
+
value: 0.7747853857295762
|
228 |
+
name: Cosine Ndcg@10
|
229 |
+
- type: cosine_mrr@10
|
230 |
+
value: 0.7000000000000001
|
231 |
+
name: Cosine Mrr@10
|
232 |
+
- type: cosine_map@100
|
233 |
+
value: 0.7000000000000001
|
234 |
+
name: Cosine Map@100
|
235 |
+
- task:
|
236 |
+
type: information-retrieval
|
237 |
+
name: Information Retrieval
|
238 |
+
dataset:
|
239 |
+
name: dim 128
|
240 |
+
type: dim_128
|
241 |
+
metrics:
|
242 |
+
- type: cosine_accuracy@1
|
243 |
+
value: 0.5
|
244 |
+
name: Cosine Accuracy@1
|
245 |
+
- type: cosine_accuracy@3
|
246 |
+
value: 0.8333333333333334
|
247 |
+
name: Cosine Accuracy@3
|
248 |
+
- type: cosine_accuracy@5
|
249 |
+
value: 0.8333333333333334
|
250 |
+
name: Cosine Accuracy@5
|
251 |
+
- type: cosine_accuracy@10
|
252 |
+
value: 1.0
|
253 |
+
name: Cosine Accuracy@10
|
254 |
+
- type: cosine_precision@1
|
255 |
+
value: 0.5
|
256 |
+
name: Cosine Precision@1
|
257 |
+
- type: cosine_precision@3
|
258 |
+
value: 0.27777777777777773
|
259 |
+
name: Cosine Precision@3
|
260 |
+
- type: cosine_precision@5
|
261 |
+
value: 0.16666666666666666
|
262 |
+
name: Cosine Precision@5
|
263 |
+
- type: cosine_precision@10
|
264 |
+
value: 0.09999999999999999
|
265 |
+
name: Cosine Precision@10
|
266 |
+
- type: cosine_recall@1
|
267 |
+
value: 0.5
|
268 |
+
name: Cosine Recall@1
|
269 |
+
- type: cosine_recall@3
|
270 |
+
value: 0.8333333333333334
|
271 |
+
name: Cosine Recall@3
|
272 |
+
- type: cosine_recall@5
|
273 |
+
value: 0.8333333333333334
|
274 |
+
name: Cosine Recall@5
|
275 |
+
- type: cosine_recall@10
|
276 |
+
value: 1.0
|
277 |
+
name: Cosine Recall@10
|
278 |
+
- type: cosine_ndcg@10
|
279 |
+
value: 0.7604815838011495
|
280 |
+
name: Cosine Ndcg@10
|
281 |
+
- type: cosine_mrr@10
|
282 |
+
value: 0.6851851851851851
|
283 |
+
name: Cosine Mrr@10
|
284 |
+
- type: cosine_map@100
|
285 |
+
value: 0.6851851851851851
|
286 |
+
name: Cosine Map@100
|
287 |
+
- task:
|
288 |
+
type: information-retrieval
|
289 |
+
name: Information Retrieval
|
290 |
+
dataset:
|
291 |
+
name: dim 64
|
292 |
+
type: dim_64
|
293 |
+
metrics:
|
294 |
+
- type: cosine_accuracy@1
|
295 |
+
value: 0.5
|
296 |
+
name: Cosine Accuracy@1
|
297 |
+
- type: cosine_accuracy@3
|
298 |
+
value: 0.6666666666666666
|
299 |
+
name: Cosine Accuracy@3
|
300 |
+
- type: cosine_accuracy@5
|
301 |
+
value: 0.6666666666666666
|
302 |
+
name: Cosine Accuracy@5
|
303 |
+
- type: cosine_accuracy@10
|
304 |
+
value: 0.8333333333333334
|
305 |
+
name: Cosine Accuracy@10
|
306 |
+
- type: cosine_precision@1
|
307 |
+
value: 0.5
|
308 |
+
name: Cosine Precision@1
|
309 |
+
- type: cosine_precision@3
|
310 |
+
value: 0.2222222222222222
|
311 |
+
name: Cosine Precision@3
|
312 |
+
- type: cosine_precision@5
|
313 |
+
value: 0.13333333333333333
|
314 |
+
name: Cosine Precision@5
|
315 |
+
- type: cosine_precision@10
|
316 |
+
value: 0.08333333333333333
|
317 |
+
name: Cosine Precision@10
|
318 |
+
- type: cosine_recall@1
|
319 |
+
value: 0.5
|
320 |
+
name: Cosine Recall@1
|
321 |
+
- type: cosine_recall@3
|
322 |
+
value: 0.6666666666666666
|
323 |
+
name: Cosine Recall@3
|
324 |
+
- type: cosine_recall@5
|
325 |
+
value: 0.6666666666666666
|
326 |
+
name: Cosine Recall@5
|
327 |
+
- type: cosine_recall@10
|
328 |
+
value: 0.8333333333333334
|
329 |
+
name: Cosine Recall@10
|
330 |
+
- type: cosine_ndcg@10
|
331 |
+
value: 0.66452282344658
|
332 |
+
name: Cosine Ndcg@10
|
333 |
+
- type: cosine_mrr@10
|
334 |
+
value: 0.611111111111111
|
335 |
+
name: Cosine Mrr@10
|
336 |
+
- type: cosine_map@100
|
337 |
+
value: 0.6262626262626262
|
338 |
+
name: Cosine Map@100
|
339 |
+
---
|
340 |
+
|
341 |
+
# SentenceTransformer based on BAAI/bge-base-en-v1.5
|
342 |
+
|
343 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
344 |
+
|
345 |
+
## Model Details
|
346 |
+
|
347 |
+
### Model Description
|
348 |
+
- **Model Type:** Sentence Transformer
|
349 |
+
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
|
350 |
+
- **Maximum Sequence Length:** 512 tokens
|
351 |
+
- **Output Dimensionality:** 768 tokens
|
352 |
+
- **Similarity Function:** Cosine Similarity
|
353 |
+
<!-- - **Training Dataset:** Unknown -->
|
354 |
+
<!-- - **Language:** Unknown -->
|
355 |
+
<!-- - **License:** Unknown -->
|
356 |
+
|
357 |
+
### Model Sources
|
358 |
+
|
359 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
360 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
361 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
362 |
+
|
363 |
+
### Full Model Architecture
|
364 |
+
|
365 |
+
```
|
366 |
+
SentenceTransformer(
|
367 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
|
368 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
369 |
+
(2): Normalize()
|
370 |
+
)
|
371 |
+
```
|
372 |
+
|
373 |
+
## Usage
|
374 |
+
|
375 |
+
### Direct Usage (Sentence Transformers)
|
376 |
+
|
377 |
+
First install the Sentence Transformers library:
|
378 |
+
|
379 |
+
```bash
|
380 |
+
pip install -U sentence-transformers
|
381 |
+
```
|
382 |
+
|
383 |
+
Then you can load this model and run inference.
|
384 |
+
```python
|
385 |
+
from sentence_transformers import SentenceTransformer
|
386 |
+
|
387 |
+
# Download from the 🤗 Hub
|
388 |
+
model = SentenceTransformer("vineet10/fm2")
|
389 |
+
# Run inference
|
390 |
+
sentences = [
|
391 |
+
"No refund shall be issued in case wrong contact details are provided by the User or the User's device being unreachable, or any other technical glitch attributable to the User. Additionally, no refund shall be issued for any live-session or call, whether audio or video, once the call or live-session is connected.",
|
392 |
+
'What circumstances lead to no refund being issued to a User according to the Refund Policy?',
|
393 |
+
'What are the initial job title and duties of the Employee as stated in the employment agreement?',
|
394 |
+
]
|
395 |
+
embeddings = model.encode(sentences)
|
396 |
+
print(embeddings.shape)
|
397 |
+
# [3, 768]
|
398 |
+
|
399 |
+
# Get the similarity scores for the embeddings
|
400 |
+
similarities = model.similarity(embeddings, embeddings)
|
401 |
+
print(similarities.shape)
|
402 |
+
# [3, 3]
|
403 |
+
```
|
404 |
+
|
405 |
+
<!--
|
406 |
+
### Direct Usage (Transformers)
|
407 |
+
|
408 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
409 |
+
|
410 |
+
</details>
|
411 |
+
-->
|
412 |
+
|
413 |
+
<!--
|
414 |
+
### Downstream Usage (Sentence Transformers)
|
415 |
+
|
416 |
+
You can finetune this model on your own dataset.
|
417 |
+
|
418 |
+
<details><summary>Click to expand</summary>
|
419 |
+
|
420 |
+
</details>
|
421 |
+
-->
|
422 |
+
|
423 |
+
<!--
|
424 |
+
### Out-of-Scope Use
|
425 |
+
|
426 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
427 |
+
-->
|
428 |
+
|
429 |
+
## Evaluation
|
430 |
+
|
431 |
+
### Metrics
|
432 |
+
|
433 |
+
#### Information Retrieval
|
434 |
+
* Dataset: `dim_768`
|
435 |
+
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
|
436 |
+
|
437 |
+
| Metric | Value |
|
438 |
+
|:--------------------|:-----------|
|
439 |
+
| cosine_accuracy@1 | 0.3333 |
|
440 |
+
| cosine_accuracy@3 | 1.0 |
|
441 |
+
| cosine_accuracy@5 | 1.0 |
|
442 |
+
| cosine_accuracy@10 | 1.0 |
|
443 |
+
| cosine_precision@1 | 0.3333 |
|
444 |
+
| cosine_precision@3 | 0.3333 |
|
445 |
+
| cosine_precision@5 | 0.2 |
|
446 |
+
| cosine_precision@10 | 0.1 |
|
447 |
+
| cosine_recall@1 | 0.3333 |
|
448 |
+
| cosine_recall@3 | 1.0 |
|
449 |
+
| cosine_recall@5 | 1.0 |
|
450 |
+
| cosine_recall@10 | 1.0 |
|
451 |
+
| cosine_ndcg@10 | 0.7321 |
|
452 |
+
| cosine_mrr@10 | 0.6389 |
|
453 |
+
| **cosine_map@100** | **0.6389** |
|
454 |
+
|
455 |
+
#### Information Retrieval
|
456 |
+
* Dataset: `dim_512`
|
457 |
+
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
|
458 |
+
|
459 |
+
| Metric | Value |
|
460 |
+
|:--------------------|:-----------|
|
461 |
+
| cosine_accuracy@1 | 0.3333 |
|
462 |
+
| cosine_accuracy@3 | 1.0 |
|
463 |
+
| cosine_accuracy@5 | 1.0 |
|
464 |
+
| cosine_accuracy@10 | 1.0 |
|
465 |
+
| cosine_precision@1 | 0.3333 |
|
466 |
+
| cosine_precision@3 | 0.3333 |
|
467 |
+
| cosine_precision@5 | 0.2 |
|
468 |
+
| cosine_precision@10 | 0.1 |
|
469 |
+
| cosine_recall@1 | 0.3333 |
|
470 |
+
| cosine_recall@3 | 1.0 |
|
471 |
+
| cosine_recall@5 | 1.0 |
|
472 |
+
| cosine_recall@10 | 1.0 |
|
473 |
+
| cosine_ndcg@10 | 0.7321 |
|
474 |
+
| cosine_mrr@10 | 0.6389 |
|
475 |
+
| **cosine_map@100** | **0.6389** |
|
476 |
+
|
477 |
+
#### Information Retrieval
|
478 |
+
* Dataset: `dim_256`
|
479 |
+
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
|
480 |
+
|
481 |
+
| Metric | Value |
|
482 |
+
|:--------------------|:--------|
|
483 |
+
| cosine_accuracy@1 | 0.5 |
|
484 |
+
| cosine_accuracy@3 | 0.8333 |
|
485 |
+
| cosine_accuracy@5 | 1.0 |
|
486 |
+
| cosine_accuracy@10 | 1.0 |
|
487 |
+
| cosine_precision@1 | 0.5 |
|
488 |
+
| cosine_precision@3 | 0.2778 |
|
489 |
+
| cosine_precision@5 | 0.2 |
|
490 |
+
| cosine_precision@10 | 0.1 |
|
491 |
+
| cosine_recall@1 | 0.5 |
|
492 |
+
| cosine_recall@3 | 0.8333 |
|
493 |
+
| cosine_recall@5 | 1.0 |
|
494 |
+
| cosine_recall@10 | 1.0 |
|
495 |
+
| cosine_ndcg@10 | 0.7748 |
|
496 |
+
| cosine_mrr@10 | 0.7 |
|
497 |
+
| **cosine_map@100** | **0.7** |
|
498 |
+
|
499 |
+
#### Information Retrieval
|
500 |
+
* Dataset: `dim_128`
|
501 |
+
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
|
502 |
+
|
503 |
+
| Metric | Value |
|
504 |
+
|:--------------------|:-----------|
|
505 |
+
| cosine_accuracy@1 | 0.5 |
|
506 |
+
| cosine_accuracy@3 | 0.8333 |
|
507 |
+
| cosine_accuracy@5 | 0.8333 |
|
508 |
+
| cosine_accuracy@10 | 1.0 |
|
509 |
+
| cosine_precision@1 | 0.5 |
|
510 |
+
| cosine_precision@3 | 0.2778 |
|
511 |
+
| cosine_precision@5 | 0.1667 |
|
512 |
+
| cosine_precision@10 | 0.1 |
|
513 |
+
| cosine_recall@1 | 0.5 |
|
514 |
+
| cosine_recall@3 | 0.8333 |
|
515 |
+
| cosine_recall@5 | 0.8333 |
|
516 |
+
| cosine_recall@10 | 1.0 |
|
517 |
+
| cosine_ndcg@10 | 0.7605 |
|
518 |
+
| cosine_mrr@10 | 0.6852 |
|
519 |
+
| **cosine_map@100** | **0.6852** |
|
520 |
+
|
521 |
+
#### Information Retrieval
|
522 |
+
* Dataset: `dim_64`
|
523 |
+
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
|
524 |
+
|
525 |
+
| Metric | Value |
|
526 |
+
|:--------------------|:-----------|
|
527 |
+
| cosine_accuracy@1 | 0.5 |
|
528 |
+
| cosine_accuracy@3 | 0.6667 |
|
529 |
+
| cosine_accuracy@5 | 0.6667 |
|
530 |
+
| cosine_accuracy@10 | 0.8333 |
|
531 |
+
| cosine_precision@1 | 0.5 |
|
532 |
+
| cosine_precision@3 | 0.2222 |
|
533 |
+
| cosine_precision@5 | 0.1333 |
|
534 |
+
| cosine_precision@10 | 0.0833 |
|
535 |
+
| cosine_recall@1 | 0.5 |
|
536 |
+
| cosine_recall@3 | 0.6667 |
|
537 |
+
| cosine_recall@5 | 0.6667 |
|
538 |
+
| cosine_recall@10 | 0.8333 |
|
539 |
+
| cosine_ndcg@10 | 0.6645 |
|
540 |
+
| cosine_mrr@10 | 0.6111 |
|
541 |
+
| **cosine_map@100** | **0.6263** |
|
542 |
+
|
543 |
+
<!--
|
544 |
+
## Bias, Risks and Limitations
|
545 |
+
|
546 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
547 |
+
-->
|
548 |
+
|
549 |
+
<!--
|
550 |
+
### Recommendations
|
551 |
+
|
552 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
553 |
+
-->
|
554 |
+
|
555 |
+
## Training Details
|
556 |
+
|
557 |
+
### Training Dataset
|
558 |
+
|
559 |
+
#### Unnamed Dataset
|
560 |
+
|
561 |
+
|
562 |
+
* Size: 48 training samples
|
563 |
+
* Columns: <code>context</code> and <code>question</code>
|
564 |
+
* Approximate statistics based on the first 1000 samples:
|
565 |
+
| | context | question |
|
566 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
567 |
+
| type | string | string |
|
568 |
+
| details | <ul><li>min: 18 tokens</li><li>mean: 41.0 tokens</li><li>max: 85 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 17.88 tokens</li><li>max: 32 tokens</li></ul> |
|
569 |
+
* Samples:
|
570 |
+
| context | question |
|
571 |
+
|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------|
|
572 |
+
| <code>The contract is governed by the laws of India, and any disputes shall be resolved exclusively by the courts in Kota.</code> | <code>What is the jurisdiction and governing law applicable to this contract?</code> |
|
573 |
+
| <code>The Parties shall maintain the confidentiality of all proprietary and confidential information disclosed by one Party to the other Party in connection with this Agreement.</code> | <code>How should proprietary and confidential information disclosed under the Agreement be treated by the Parties?</code> |
|
574 |
+
| <code>No refund shall be provided for any products or merchandise that is purchased by the User from or through the Platform.</code> | <code>What is the refund policy for products or merchandise purchased by the User through the Platform?</code> |
|
575 |
+
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
576 |
+
```json
|
577 |
+
{
|
578 |
+
"scale": 20.0,
|
579 |
+
"similarity_fct": "cos_sim"
|
580 |
+
}
|
581 |
+
```
|
582 |
+
|
583 |
+
### Training Hyperparameters
|
584 |
+
#### Non-Default Hyperparameters
|
585 |
+
|
586 |
+
- `eval_strategy`: steps
|
587 |
+
- `per_device_train_batch_size`: 16
|
588 |
+
- `per_device_eval_batch_size`: 16
|
589 |
+
- `num_train_epochs`: 5
|
590 |
+
- `warmup_ratio`: 0.1
|
591 |
+
- `fp16`: True
|
592 |
+
- `batch_sampler`: no_duplicates
|
593 |
+
|
594 |
+
#### All Hyperparameters
|
595 |
+
<details><summary>Click to expand</summary>
|
596 |
+
|
597 |
+
- `overwrite_output_dir`: False
|
598 |
+
- `do_predict`: False
|
599 |
+
- `eval_strategy`: steps
|
600 |
+
- `prediction_loss_only`: True
|
601 |
+
- `per_device_train_batch_size`: 16
|
602 |
+
- `per_device_eval_batch_size`: 16
|
603 |
+
- `per_gpu_train_batch_size`: None
|
604 |
+
- `per_gpu_eval_batch_size`: None
|
605 |
+
- `gradient_accumulation_steps`: 1
|
606 |
+
- `eval_accumulation_steps`: None
|
607 |
+
- `learning_rate`: 5e-05
|
608 |
+
- `weight_decay`: 0.0
|
609 |
+
- `adam_beta1`: 0.9
|
610 |
+
- `adam_beta2`: 0.999
|
611 |
+
- `adam_epsilon`: 1e-08
|
612 |
+
- `max_grad_norm`: 1.0
|
613 |
+
- `num_train_epochs`: 5
|
614 |
+
- `max_steps`: -1
|
615 |
+
- `lr_scheduler_type`: linear
|
616 |
+
- `lr_scheduler_kwargs`: {}
|
617 |
+
- `warmup_ratio`: 0.1
|
618 |
+
- `warmup_steps`: 0
|
619 |
+
- `log_level`: passive
|
620 |
+
- `log_level_replica`: warning
|
621 |
+
- `log_on_each_node`: True
|
622 |
+
- `logging_nan_inf_filter`: True
|
623 |
+
- `save_safetensors`: True
|
624 |
+
- `save_on_each_node`: False
|
625 |
+
- `save_only_model`: False
|
626 |
+
- `restore_callback_states_from_checkpoint`: False
|
627 |
+
- `no_cuda`: False
|
628 |
+
- `use_cpu`: False
|
629 |
+
- `use_mps_device`: False
|
630 |
+
- `seed`: 42
|
631 |
+
- `data_seed`: None
|
632 |
+
- `jit_mode_eval`: False
|
633 |
+
- `use_ipex`: False
|
634 |
+
- `bf16`: False
|
635 |
+
- `fp16`: True
|
636 |
+
- `fp16_opt_level`: O1
|
637 |
+
- `half_precision_backend`: auto
|
638 |
+
- `bf16_full_eval`: False
|
639 |
+
- `fp16_full_eval`: False
|
640 |
+
- `tf32`: None
|
641 |
+
- `local_rank`: 0
|
642 |
+
- `ddp_backend`: None
|
643 |
+
- `tpu_num_cores`: None
|
644 |
+
- `tpu_metrics_debug`: False
|
645 |
+
- `debug`: []
|
646 |
+
- `dataloader_drop_last`: False
|
647 |
+
- `dataloader_num_workers`: 0
|
648 |
+
- `dataloader_prefetch_factor`: None
|
649 |
+
- `past_index`: -1
|
650 |
+
- `disable_tqdm`: False
|
651 |
+
- `remove_unused_columns`: True
|
652 |
+
- `label_names`: None
|
653 |
+
- `load_best_model_at_end`: False
|
654 |
+
- `ignore_data_skip`: False
|
655 |
+
- `fsdp`: []
|
656 |
+
- `fsdp_min_num_params`: 0
|
657 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
658 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
659 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
660 |
+
- `deepspeed`: None
|
661 |
+
- `label_smoothing_factor`: 0.0
|
662 |
+
- `optim`: adamw_torch
|
663 |
+
- `optim_args`: None
|
664 |
+
- `adafactor`: False
|
665 |
+
- `group_by_length`: False
|
666 |
+
- `length_column_name`: length
|
667 |
+
- `ddp_find_unused_parameters`: None
|
668 |
+
- `ddp_bucket_cap_mb`: None
|
669 |
+
- `ddp_broadcast_buffers`: False
|
670 |
+
- `dataloader_pin_memory`: True
|
671 |
+
- `dataloader_persistent_workers`: False
|
672 |
+
- `skip_memory_metrics`: True
|
673 |
+
- `use_legacy_prediction_loop`: False
|
674 |
+
- `push_to_hub`: False
|
675 |
+
- `resume_from_checkpoint`: None
|
676 |
+
- `hub_model_id`: None
|
677 |
+
- `hub_strategy`: every_save
|
678 |
+
- `hub_private_repo`: False
|
679 |
+
- `hub_always_push`: False
|
680 |
+
- `gradient_checkpointing`: False
|
681 |
+
- `gradient_checkpointing_kwargs`: None
|
682 |
+
- `include_inputs_for_metrics`: False
|
683 |
+
- `eval_do_concat_batches`: True
|
684 |
+
- `fp16_backend`: auto
|
685 |
+
- `push_to_hub_model_id`: None
|
686 |
+
- `push_to_hub_organization`: None
|
687 |
+
- `mp_parameters`:
|
688 |
+
- `auto_find_batch_size`: False
|
689 |
+
- `full_determinism`: False
|
690 |
+
- `torchdynamo`: None
|
691 |
+
- `ray_scope`: last
|
692 |
+
- `ddp_timeout`: 1800
|
693 |
+
- `torch_compile`: False
|
694 |
+
- `torch_compile_backend`: None
|
695 |
+
- `torch_compile_mode`: None
|
696 |
+
- `dispatch_batches`: None
|
697 |
+
- `split_batches`: None
|
698 |
+
- `include_tokens_per_second`: False
|
699 |
+
- `include_num_input_tokens_seen`: False
|
700 |
+
- `neftune_noise_alpha`: None
|
701 |
+
- `optim_target_modules`: None
|
702 |
+
- `batch_eval_metrics`: False
|
703 |
+
- `eval_on_start`: False
|
704 |
+
- `batch_sampler`: no_duplicates
|
705 |
+
- `multi_dataset_batch_sampler`: proportional
|
706 |
+
|
707 |
+
</details>
|
708 |
+
|
709 |
+
### Training Logs
|
710 |
+
| Epoch | Step | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
|
711 |
+
|:-----:|:----:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
|
712 |
+
| 0 | 0 | 0.6852 | 0.7000 | 0.6389 | 0.6263 | 0.6389 |
|
713 |
+
|
714 |
+
|
715 |
+
### Framework Versions
|
716 |
+
- Python: 3.10.12
|
717 |
+
- Sentence Transformers: 3.0.1
|
718 |
+
- Transformers: 4.42.4
|
719 |
+
- PyTorch: 2.3.1+cu121
|
720 |
+
- Accelerate: 0.32.1
|
721 |
+
- Datasets: 2.20.0
|
722 |
+
- Tokenizers: 0.19.1
|
723 |
+
|
724 |
+
## Citation
|
725 |
+
|
726 |
+
### BibTeX
|
727 |
+
|
728 |
+
#### Sentence Transformers
|
729 |
+
```bibtex
|
730 |
+
@inproceedings{reimers-2019-sentence-bert,
|
731 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
732 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
733 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
734 |
+
month = "11",
|
735 |
+
year = "2019",
|
736 |
+
publisher = "Association for Computational Linguistics",
|
737 |
+
url = "https://arxiv.org/abs/1908.10084",
|
738 |
+
}
|
739 |
+
```
|
740 |
+
|
741 |
+
#### MultipleNegativesRankingLoss
|
742 |
+
```bibtex
|
743 |
+
@misc{henderson2017efficient,
|
744 |
+
title={Efficient Natural Language Response Suggestion for Smart Reply},
|
745 |
+
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
|
746 |
+
year={2017},
|
747 |
+
eprint={1705.00652},
|
748 |
+
archivePrefix={arXiv},
|
749 |
+
primaryClass={cs.CL}
|
750 |
+
}
|
751 |
+
```
|
752 |
+
|
753 |
+
<!--
|
754 |
+
## Glossary
|
755 |
+
|
756 |
+
*Clearly define terms in order to be accessible across audiences.*
|
757 |
+
-->
|
758 |
+
|
759 |
+
<!--
|
760 |
+
## Model Card Authors
|
761 |
+
|
762 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
763 |
+
-->
|
764 |
+
|
765 |
+
<!--
|
766 |
+
## Model Card Contact
|
767 |
+
|
768 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
769 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "BAAI/bge-base-en-v1.5",
|
3 |
+
"architectures": [
|
4 |
+
"BertModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"gradient_checkpointing": false,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 768,
|
12 |
+
"id2label": {
|
13 |
+
"0": "LABEL_0"
|
14 |
+
},
|
15 |
+
"initializer_range": 0.02,
|
16 |
+
"intermediate_size": 3072,
|
17 |
+
"label2id": {
|
18 |
+
"LABEL_0": 0
|
19 |
+
},
|
20 |
+
"layer_norm_eps": 1e-12,
|
21 |
+
"max_position_embeddings": 512,
|
22 |
+
"model_type": "bert",
|
23 |
+
"num_attention_heads": 12,
|
24 |
+
"num_hidden_layers": 12,
|
25 |
+
"pad_token_id": 0,
|
26 |
+
"position_embedding_type": "absolute",
|
27 |
+
"torch_dtype": "float32",
|
28 |
+
"transformers_version": "4.42.4",
|
29 |
+
"type_vocab_size": 2,
|
30 |
+
"use_cache": true,
|
31 |
+
"vocab_size": 30522
|
32 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.0.1",
|
4 |
+
"transformers": "4.42.4",
|
5 |
+
"pytorch": "2.3.1+cu121"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": null
|
10 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7d250e1f2e390a5a022a9198633ebc9072d74f0cb183ac152adc95fd16177ff3
|
3 |
+
size 437951328
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": true
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_basic_tokenize": true,
|
47 |
+
"do_lower_case": true,
|
48 |
+
"mask_token": "[MASK]",
|
49 |
+
"model_max_length": 512,
|
50 |
+
"never_split": null,
|
51 |
+
"pad_token": "[PAD]",
|
52 |
+
"sep_token": "[SEP]",
|
53 |
+
"strip_accents": null,
|
54 |
+
"tokenize_chinese_chars": true,
|
55 |
+
"tokenizer_class": "BertTokenizer",
|
56 |
+
"unk_token": "[UNK]"
|
57 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|