Upload 3 files
Browse files- __init__.py +0 -0
- tokenization_bartpho.py +329 -0
- tokenization_bartpho_fast.py +334 -0
__init__.py
ADDED
File without changes
|
tokenization_bartpho.py
ADDED
@@ -0,0 +1,329 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021 VinAI Research and the HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License
|
15 |
+
""" Tokenization classes for BARTpho-syllable model."""
|
16 |
+
|
17 |
+
|
18 |
+
import os
|
19 |
+
from shutil import copyfile
|
20 |
+
from typing import Any, Dict, List, Optional, Tuple
|
21 |
+
|
22 |
+
import sentencepiece as spm
|
23 |
+
|
24 |
+
from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
|
25 |
+
from transformers.utils import logging
|
26 |
+
|
27 |
+
|
28 |
+
logger = logging.get_logger(__name__)
|
29 |
+
|
30 |
+
SPIECE_UNDERLINE = "▁"
|
31 |
+
|
32 |
+
VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.bpe.model", "monolingual_vocab_file": "dict.txt"}
|
33 |
+
|
34 |
+
PRETRAINED_VOCAB_FILES_MAP = {
|
35 |
+
"vocab_file": {
|
36 |
+
"vinai/bartpho-syllable": "https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model",
|
37 |
+
},
|
38 |
+
"monolingual_vocab_file": {
|
39 |
+
"vinai/bartpho-syllable": "https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt",
|
40 |
+
},
|
41 |
+
}
|
42 |
+
|
43 |
+
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {"vinai/bartpho-syllable": 1024}
|
44 |
+
|
45 |
+
|
46 |
+
class BartphoTokenizer(PreTrainedTokenizer):
|
47 |
+
"""
|
48 |
+
Adapted from [`XLMRobertaTokenizer`]. Based on [SentencePiece](https://github.com/google/sentencepiece).
|
49 |
+
|
50 |
+
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
|
51 |
+
this superclass for more information regarding those methods.
|
52 |
+
|
53 |
+
Args:
|
54 |
+
vocab_file (`str`):
|
55 |
+
Path to the vocabulary file. This vocabulary is the pre-trained SentencePiece model available from the
|
56 |
+
multilingual XLM-RoBERTa, also used in mBART, consisting of 250K types.
|
57 |
+
monolingual_vocab_file (`str`):
|
58 |
+
Path to the monolingual vocabulary file. This monolingual vocabulary consists of Vietnamese-specialized
|
59 |
+
types extracted from the multilingual vocabulary vocab_file of 250K types.
|
60 |
+
bos_token (`str`, *optional*, defaults to `"<s>"`):
|
61 |
+
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
|
62 |
+
|
63 |
+
<Tip>
|
64 |
+
|
65 |
+
When building a sequence using special tokens, this is not the token that is used for the beginning of
|
66 |
+
sequence. The token used is the `cls_token`.
|
67 |
+
|
68 |
+
</Tip>
|
69 |
+
|
70 |
+
eos_token (`str`, *optional*, defaults to `"</s>"`):
|
71 |
+
The end of sequence token.
|
72 |
+
|
73 |
+
<Tip>
|
74 |
+
|
75 |
+
When building a sequence using special tokens, this is not the token that is used for the end of sequence.
|
76 |
+
The token used is the `sep_token`.
|
77 |
+
|
78 |
+
</Tip>
|
79 |
+
|
80 |
+
sep_token (`str`, *optional*, defaults to `"</s>"`):
|
81 |
+
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
|
82 |
+
sequence classification or for a text and a question for question answering. It is also used as the last
|
83 |
+
token of a sequence built with special tokens.
|
84 |
+
cls_token (`str`, *optional*, defaults to `"<s>"`):
|
85 |
+
The classifier token which is used when doing sequence classification (classification of the whole sequence
|
86 |
+
instead of per-token classification). It is the first token of the sequence when built with special tokens.
|
87 |
+
unk_token (`str`, *optional*, defaults to `"<unk>"`):
|
88 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
89 |
+
token instead.
|
90 |
+
pad_token (`str`, *optional*, defaults to `"<pad>"`):
|
91 |
+
The token used for padding, for example when batching sequences of different lengths.
|
92 |
+
mask_token (`str`, *optional*, defaults to `"<mask>"`):
|
93 |
+
The token used for masking values. This is the token used when training this model with masked language
|
94 |
+
modeling. This is the token which the model will try to predict.
|
95 |
+
additional_special_tokens (`List[str]`, *optional*, defaults to `["<s>NOTUSED", "</s>NOTUSED"]`):
|
96 |
+
Additional special tokens used by the tokenizer.
|
97 |
+
sp_model_kwargs (`dict`, *optional*):
|
98 |
+
Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
|
99 |
+
SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
|
100 |
+
to set:
|
101 |
+
|
102 |
+
- `enable_sampling`: Enable subword regularization.
|
103 |
+
- `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
|
104 |
+
|
105 |
+
- `nbest_size = {0,1}`: No sampling is performed.
|
106 |
+
- `nbest_size > 1`: samples from the nbest_size results.
|
107 |
+
- `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
|
108 |
+
using forward-filtering-and-backward-sampling algorithm.
|
109 |
+
|
110 |
+
- `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
|
111 |
+
BPE-dropout.
|
112 |
+
|
113 |
+
Attributes:
|
114 |
+
sp_model (`SentencePieceProcessor`):
|
115 |
+
The *SentencePiece* processor that is used for every conversion (string, tokens and IDs).
|
116 |
+
"""
|
117 |
+
|
118 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
119 |
+
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
120 |
+
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
|
121 |
+
model_input_names = ["input_ids", "attention_mask"]
|
122 |
+
|
123 |
+
def __init__(
|
124 |
+
self,
|
125 |
+
vocab_file,
|
126 |
+
monolingual_vocab_file,
|
127 |
+
bos_token="<s>",
|
128 |
+
eos_token="</s>",
|
129 |
+
sep_token="</s>",
|
130 |
+
cls_token="<s>",
|
131 |
+
unk_token="<unk>",
|
132 |
+
pad_token="<pad>",
|
133 |
+
mask_token="<mask>",
|
134 |
+
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
135 |
+
**kwargs
|
136 |
+
) -> None:
|
137 |
+
# Mask token behave like a normal word, i.e. include the space before it
|
138 |
+
mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token
|
139 |
+
|
140 |
+
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
|
141 |
+
|
142 |
+
super().__init__(
|
143 |
+
bos_token=bos_token,
|
144 |
+
eos_token=eos_token,
|
145 |
+
unk_token=unk_token,
|
146 |
+
sep_token=sep_token,
|
147 |
+
cls_token=cls_token,
|
148 |
+
pad_token=pad_token,
|
149 |
+
mask_token=mask_token,
|
150 |
+
sp_model_kwargs=self.sp_model_kwargs,
|
151 |
+
**kwargs,
|
152 |
+
)
|
153 |
+
|
154 |
+
self.vocab_file = vocab_file
|
155 |
+
self.monolingual_vocab_file = monolingual_vocab_file
|
156 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
157 |
+
self.sp_model.Load(str(vocab_file))
|
158 |
+
|
159 |
+
# Load the reduced vocab
|
160 |
+
|
161 |
+
# Keep order of special tokens for backward compatibility
|
162 |
+
self.fairseq_tokens_to_ids = {}
|
163 |
+
cnt = 0
|
164 |
+
for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]:
|
165 |
+
if str(token) not in self.fairseq_tokens_to_ids:
|
166 |
+
self.fairseq_tokens_to_ids[str(token)] = cnt
|
167 |
+
cnt += 1
|
168 |
+
with open(monolingual_vocab_file, "r", encoding="utf-8") as f:
|
169 |
+
for line in f.readlines():
|
170 |
+
token = line.strip().split()[0]
|
171 |
+
self.fairseq_tokens_to_ids[token] = len(self.fairseq_tokens_to_ids)
|
172 |
+
if str(mask_token) not in self.fairseq_tokens_to_ids:
|
173 |
+
self.fairseq_tokens_to_ids[str(mask_token)] = len(self.fairseq_tokens_to_ids)
|
174 |
+
|
175 |
+
self.fairseq_ids_to_tokens = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
|
176 |
+
|
177 |
+
def __getstate__(self):
|
178 |
+
state = self.__dict__.copy()
|
179 |
+
state["sp_model"] = None
|
180 |
+
state["sp_model_proto"] = self.sp_model.serialized_model_proto()
|
181 |
+
return state
|
182 |
+
|
183 |
+
def __setstate__(self, d):
|
184 |
+
self.__dict__ = d
|
185 |
+
|
186 |
+
# for backward compatibility
|
187 |
+
if not hasattr(self, "sp_model_kwargs"):
|
188 |
+
self.sp_model_kwargs = {}
|
189 |
+
|
190 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
191 |
+
self.sp_model.LoadFromSerializedProto(self.sp_model_proto)
|
192 |
+
|
193 |
+
def build_inputs_with_special_tokens(
|
194 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
195 |
+
) -> List[int]:
|
196 |
+
"""
|
197 |
+
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
198 |
+
adding special tokens. An BARTPho sequence has the following format:
|
199 |
+
|
200 |
+
- single sequence: `<s> X </s>`
|
201 |
+
- pair of sequences: `<s> A </s></s> B </s>`
|
202 |
+
|
203 |
+
Args:
|
204 |
+
token_ids_0 (`List[int]`):
|
205 |
+
List of IDs to which the special tokens will be added.
|
206 |
+
token_ids_1 (`List[int]`, *optional*):
|
207 |
+
Optional second list of IDs for sequence pairs.
|
208 |
+
|
209 |
+
Returns:
|
210 |
+
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
211 |
+
"""
|
212 |
+
|
213 |
+
if token_ids_1 is None:
|
214 |
+
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
|
215 |
+
cls = [self.cls_token_id]
|
216 |
+
sep = [self.sep_token_id]
|
217 |
+
return cls + token_ids_0 + sep + sep + token_ids_1 + sep
|
218 |
+
|
219 |
+
def get_special_tokens_mask(
|
220 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
221 |
+
) -> List[int]:
|
222 |
+
"""
|
223 |
+
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
224 |
+
special tokens using the tokenizer `prepare_for_model` method.
|
225 |
+
|
226 |
+
Args:
|
227 |
+
token_ids_0 (`List[int]`):
|
228 |
+
List of IDs.
|
229 |
+
token_ids_1 (`List[int]`, *optional*):
|
230 |
+
Optional second list of IDs for sequence pairs.
|
231 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
232 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
233 |
+
|
234 |
+
Returns:
|
235 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
236 |
+
"""
|
237 |
+
|
238 |
+
if already_has_special_tokens:
|
239 |
+
return super().get_special_tokens_mask(
|
240 |
+
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
241 |
+
)
|
242 |
+
|
243 |
+
if token_ids_1 is None:
|
244 |
+
return [1] + ([0] * len(token_ids_0)) + [1]
|
245 |
+
return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
|
246 |
+
|
247 |
+
def create_token_type_ids_from_sequences(
|
248 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
249 |
+
) -> List[int]:
|
250 |
+
"""
|
251 |
+
Create a mask from the two sequences passed to be used in a sequence-pair classification task. BARTPho does not
|
252 |
+
make use of token type ids, therefore a list of zeros is returned.
|
253 |
+
|
254 |
+
Args:
|
255 |
+
token_ids_0 (`List[int]`):
|
256 |
+
List of IDs.
|
257 |
+
token_ids_1 (`List[int]`, *optional*):
|
258 |
+
Optional second list of IDs for sequence pairs.
|
259 |
+
|
260 |
+
Returns:
|
261 |
+
`List[int]`: List of zeros.
|
262 |
+
|
263 |
+
"""
|
264 |
+
|
265 |
+
sep = [self.sep_token_id]
|
266 |
+
cls = [self.cls_token_id]
|
267 |
+
|
268 |
+
if token_ids_1 is None:
|
269 |
+
return len(cls + token_ids_0 + sep) * [0]
|
270 |
+
return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]
|
271 |
+
|
272 |
+
@property
|
273 |
+
def vocab_size(self):
|
274 |
+
return len(self.fairseq_ids_to_tokens)
|
275 |
+
|
276 |
+
def get_vocab(self):
|
277 |
+
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
|
278 |
+
vocab.update(self.added_tokens_encoder)
|
279 |
+
return vocab
|
280 |
+
|
281 |
+
def _tokenize(self, text: str) -> List[str]:
|
282 |
+
return self.sp_model.encode(text, out_type=str)
|
283 |
+
|
284 |
+
def _convert_token_to_id(self, token):
|
285 |
+
"""Converts a token (str) in an id using the vocab."""
|
286 |
+
if token in self.fairseq_tokens_to_ids:
|
287 |
+
return self.fairseq_tokens_to_ids[token]
|
288 |
+
else:
|
289 |
+
return self.unk_token_id
|
290 |
+
|
291 |
+
def _convert_id_to_token(self, index):
|
292 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
293 |
+
return self.fairseq_ids_to_tokens[index]
|
294 |
+
|
295 |
+
def convert_tokens_to_string(self, tokens):
|
296 |
+
"""Converts a sequence of tokens (strings for sub-words) in a single string."""
|
297 |
+
out_string = "".join(tokens).replace(SPIECE_UNDERLINE, " ").strip()
|
298 |
+
return out_string
|
299 |
+
|
300 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
301 |
+
if not os.path.isdir(save_directory):
|
302 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
303 |
+
return
|
304 |
+
out_vocab_file = os.path.join(
|
305 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
306 |
+
)
|
307 |
+
out_monolingual_vocab_file = os.path.join(
|
308 |
+
save_directory,
|
309 |
+
(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["monolingual_vocab_file"],
|
310 |
+
)
|
311 |
+
|
312 |
+
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
|
313 |
+
copyfile(self.vocab_file, out_vocab_file)
|
314 |
+
elif not os.path.isfile(self.vocab_file):
|
315 |
+
with open(out_vocab_file, "wb") as fi:
|
316 |
+
content_spiece_model = self.sp_model.serialized_model_proto()
|
317 |
+
fi.write(content_spiece_model)
|
318 |
+
|
319 |
+
if os.path.abspath(self.monolingual_vocab_file) != os.path.abspath(
|
320 |
+
out_monolingual_vocab_file
|
321 |
+
) and os.path.isfile(self.monolingual_vocab_file):
|
322 |
+
copyfile(self.monolingual_vocab_file, out_monolingual_vocab_file)
|
323 |
+
elif not os.path.isfile(self.monolingual_vocab_file):
|
324 |
+
with open(out_monolingual_vocab_file, "w", encoding="utf-8") as fp:
|
325 |
+
for token in self.fairseq_tokens_to_ids:
|
326 |
+
if token not in self.all_special_tokens:
|
327 |
+
fp.write(f"{str(token)} \n")
|
328 |
+
|
329 |
+
return out_vocab_file, out_monolingual_vocab_file
|
tokenization_bartpho_fast.py
ADDED
@@ -0,0 +1,334 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021 VinAI Research and the HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License
|
15 |
+
""" Tokenization classes for BARTpho-syllable model."""
|
16 |
+
|
17 |
+
import os
|
18 |
+
from collections import defaultdict
|
19 |
+
from shutil import copyfile
|
20 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
21 |
+
|
22 |
+
from transformers.tokenization_utils import AddedToken
|
23 |
+
from transformers.tokenization_utils_base import EncodingFast
|
24 |
+
from transformers.tokenization_utils_fast import PreTrainedTokenizerFast
|
25 |
+
from transformers.utils import is_sentencepiece_available, logging
|
26 |
+
|
27 |
+
|
28 |
+
if is_sentencepiece_available():
|
29 |
+
from .tokenization_bartpho import BartphoTokenizer
|
30 |
+
else:
|
31 |
+
BartphoTokenizer = None
|
32 |
+
|
33 |
+
|
34 |
+
logger = logging.get_logger(__name__)
|
35 |
+
|
36 |
+
VOCAB_FILES_NAMES = {
|
37 |
+
"vocab_file": "sentencepiece.bpe.model",
|
38 |
+
"monolingual_vocab_file": "dict.txt",
|
39 |
+
"tokenizer_file": "tokenizer.json",
|
40 |
+
}
|
41 |
+
|
42 |
+
PRETRAINED_VOCAB_FILES_MAP = {
|
43 |
+
"vocab_file": {
|
44 |
+
"vinai/bartpho-syllable": "https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model",
|
45 |
+
},
|
46 |
+
"monolingual_vocab_file": {
|
47 |
+
"vinai/bartpho-syllable": "https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt",
|
48 |
+
},
|
49 |
+
"tokenizer_file": {
|
50 |
+
"vinai/bartpho-syllable": "https://huggingface.co/vinai/bartpho-syllable/resolve/main/tokenizer.json",
|
51 |
+
},
|
52 |
+
}
|
53 |
+
|
54 |
+
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {"vinai/bartpho-syllable": 1024}
|
55 |
+
|
56 |
+
|
57 |
+
class BartphoTokenizerFast(PreTrainedTokenizerFast):
|
58 |
+
"""
|
59 |
+
Construct a "fast" BARTpho tokenizer (backed by HuggingFace's *tokenizers* library). Adapted from
|
60 |
+
[`XLMRobertaTokenizerFast`]. Based on [SentencePiece](https://github.com/google/sentencepiece).
|
61 |
+
|
62 |
+
This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
|
63 |
+
refer to this superclass for more information regarding those methods.
|
64 |
+
|
65 |
+
Args:
|
66 |
+
vocab_file (`str`):
|
67 |
+
Path to the vocabulary file.
|
68 |
+
bos_token (`str`, *optional*, defaults to `"<s>"`):
|
69 |
+
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
|
70 |
+
|
71 |
+
<Tip>
|
72 |
+
|
73 |
+
When building a sequence using special tokens, this is not the token that is used for the beginning of
|
74 |
+
sequence. The token used is the `cls_token`.
|
75 |
+
|
76 |
+
</Tip>
|
77 |
+
|
78 |
+
eos_token (`str`, *optional*, defaults to `"</s>"`):
|
79 |
+
The end of sequence token.
|
80 |
+
|
81 |
+
<Tip>
|
82 |
+
|
83 |
+
When building a sequence using special tokens, this is not the token that is used for the end of sequence.
|
84 |
+
The token used is the `sep_token`.
|
85 |
+
|
86 |
+
</Tip>
|
87 |
+
|
88 |
+
sep_token (`str`, *optional*, defaults to `"</s>"`):
|
89 |
+
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
|
90 |
+
sequence classification or for a text and a question for question answering. It is also used as the last
|
91 |
+
token of a sequence built with special tokens.
|
92 |
+
cls_token (`str`, *optional*, defaults to `"<s>"`):
|
93 |
+
The classifier token which is used when doing sequence classification (classification of the whole sequence
|
94 |
+
instead of per-token classification). It is the first token of the sequence when built with special tokens.
|
95 |
+
unk_token (`str`, *optional*, defaults to `"<unk>"`):
|
96 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
97 |
+
token instead.
|
98 |
+
pad_token (`str`, *optional*, defaults to `"<pad>"`):
|
99 |
+
The token used for padding, for example when batching sequences of different lengths.
|
100 |
+
mask_token (`str`, *optional*, defaults to `"<mask>"`):
|
101 |
+
The token used for masking values. This is the token used when training this model with masked language
|
102 |
+
modeling. This is the token which the model will try to predict.
|
103 |
+
additional_special_tokens (`List[str]`, *optional*, defaults to `["<s>NOTUSED", "</s>NOTUSED"]`):
|
104 |
+
Additional special tokens used by the tokenizer.
|
105 |
+
"""
|
106 |
+
|
107 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
108 |
+
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
109 |
+
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
|
110 |
+
model_input_names = ["input_ids", "attention_mask"]
|
111 |
+
slow_tokenizer_class = BartphoTokenizer
|
112 |
+
|
113 |
+
def __init__(
|
114 |
+
self,
|
115 |
+
vocab_file=None,
|
116 |
+
monolingual_vocab_file=None,
|
117 |
+
tokenizer_file=None,
|
118 |
+
bos_token="<s>",
|
119 |
+
eos_token="</s>",
|
120 |
+
sep_token="</s>",
|
121 |
+
cls_token="<s>",
|
122 |
+
unk_token="<unk>",
|
123 |
+
pad_token="<pad>",
|
124 |
+
mask_token="<mask>",
|
125 |
+
**kwargs
|
126 |
+
):
|
127 |
+
# Mask token behave like a normal word, i.e. include the space before it
|
128 |
+
mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token
|
129 |
+
|
130 |
+
super().__init__(
|
131 |
+
vocab_file,
|
132 |
+
monolingual_vocab_file,
|
133 |
+
tokenizer_file=tokenizer_file,
|
134 |
+
bos_token=bos_token,
|
135 |
+
eos_token=eos_token,
|
136 |
+
sep_token=sep_token,
|
137 |
+
cls_token=cls_token,
|
138 |
+
unk_token=unk_token,
|
139 |
+
pad_token=pad_token,
|
140 |
+
mask_token=mask_token,
|
141 |
+
**kwargs,
|
142 |
+
)
|
143 |
+
|
144 |
+
self.vocab_file = vocab_file
|
145 |
+
self.monolingual_vocab_file = monolingual_vocab_file
|
146 |
+
self.can_save_slow_tokenizer = False if not self.vocab_file else True
|
147 |
+
|
148 |
+
def get_added_vocab_hacking(self):
|
149 |
+
"""
|
150 |
+
Returns the added tokens in the vocabulary as a dictionary of token to index.
|
151 |
+
|
152 |
+
Returns:
|
153 |
+
`Dict[str, int], Dict[int, int]`: The added tokens, and their original and new ids
|
154 |
+
"""
|
155 |
+
base_vocab_size = self._tokenizer.get_vocab_size(with_added_tokens=False)
|
156 |
+
full_vocab_size = self._tokenizer.get_vocab_size(with_added_tokens=True)
|
157 |
+
if full_vocab_size == base_vocab_size:
|
158 |
+
return {}, {}
|
159 |
+
|
160 |
+
# Tokens in added_vocab should have ids that are equal to or larger than the size of base_vocab
|
161 |
+
added_vocab = dict(
|
162 |
+
(self._tokenizer.id_to_token(index), index + 1 - base_vocab_size + self.mask_token_id)
|
163 |
+
for index in range(base_vocab_size, full_vocab_size)
|
164 |
+
)
|
165 |
+
|
166 |
+
id_mapping = dict((index, self._tokenizer.token_to_id(tok)) for tok, index in added_vocab.items())
|
167 |
+
|
168 |
+
return added_vocab, id_mapping
|
169 |
+
|
170 |
+
def _decode(
|
171 |
+
self,
|
172 |
+
token_ids: Union[int, List[int]],
|
173 |
+
skip_special_tokens: bool = False,
|
174 |
+
clean_up_tokenization_spaces: bool = True,
|
175 |
+
**kwargs
|
176 |
+
) -> str:
|
177 |
+
self._decode_use_source_tokenizer = kwargs.pop("use_source_tokenizer", False)
|
178 |
+
|
179 |
+
if isinstance(token_ids, int):
|
180 |
+
token_ids = [token_ids]
|
181 |
+
|
182 |
+
# Mapping ids into their original values
|
183 |
+
_, id_mapping = self.get_added_vocab_hacking()
|
184 |
+
if len(id_mapping) > 0:
|
185 |
+
token_ids = [id_mapping[id] if id in id_mapping else id for id in token_ids]
|
186 |
+
|
187 |
+
text = self._tokenizer.decode(token_ids, skip_special_tokens=skip_special_tokens)
|
188 |
+
|
189 |
+
if clean_up_tokenization_spaces:
|
190 |
+
clean_text = self.clean_up_tokenization(text)
|
191 |
+
return clean_text
|
192 |
+
else:
|
193 |
+
return text
|
194 |
+
|
195 |
+
def _convert_encoding(
|
196 |
+
self,
|
197 |
+
encoding: EncodingFast,
|
198 |
+
return_token_type_ids: Optional[bool] = None,
|
199 |
+
return_attention_mask: Optional[bool] = None,
|
200 |
+
return_overflowing_tokens: bool = False,
|
201 |
+
return_special_tokens_mask: bool = False,
|
202 |
+
return_offsets_mapping: bool = False,
|
203 |
+
return_length: bool = False,
|
204 |
+
verbose: bool = True,
|
205 |
+
) -> Tuple[Dict[str, Any], List[EncodingFast]]:
|
206 |
+
"""
|
207 |
+
Convert the encoding representation (from low-level HuggingFace tokenizer output) to a python Dict and a list
|
208 |
+
of encodings, take care of building a batch from overflowing tokens.
|
209 |
+
|
210 |
+
Overflowing tokens are converted to additional examples (like batches) so the output values of the dict are
|
211 |
+
lists (overflows) of lists (tokens).
|
212 |
+
|
213 |
+
Output shape: (overflows, sequence length)
|
214 |
+
"""
|
215 |
+
if return_token_type_ids is None:
|
216 |
+
return_token_type_ids = "token_type_ids" in self.model_input_names
|
217 |
+
if return_attention_mask is None:
|
218 |
+
return_attention_mask = "attention_mask" in self.model_input_names
|
219 |
+
|
220 |
+
if return_overflowing_tokens and encoding.overflowing is not None:
|
221 |
+
encodings = [encoding] + encoding.overflowing
|
222 |
+
else:
|
223 |
+
encodings = [encoding]
|
224 |
+
|
225 |
+
encoding_dict = defaultdict(list)
|
226 |
+
added_vocab, _ = self.get_added_vocab_hacking()
|
227 |
+
for e in encodings:
|
228 |
+
# encoding_dict["input_ids"].append(e.ids)
|
229 |
+
# Reassign ids of tokens due to the hacking strategy
|
230 |
+
ids = []
|
231 |
+
for id, token in zip(e.ids, e.tokens):
|
232 |
+
if id <= self.mask_token_id:
|
233 |
+
ids.append(id)
|
234 |
+
else:
|
235 |
+
if token.strip() in added_vocab:
|
236 |
+
ids.append(added_vocab[token.strip()])
|
237 |
+
else:
|
238 |
+
ids.append(self.unk_token_id)
|
239 |
+
|
240 |
+
encoding_dict["input_ids"].append(ids)
|
241 |
+
|
242 |
+
if return_token_type_ids:
|
243 |
+
encoding_dict["token_type_ids"].append(e.type_ids)
|
244 |
+
if return_attention_mask:
|
245 |
+
encoding_dict["attention_mask"].append(e.attention_mask)
|
246 |
+
if return_special_tokens_mask:
|
247 |
+
encoding_dict["special_tokens_mask"].append(e.special_tokens_mask)
|
248 |
+
if return_offsets_mapping:
|
249 |
+
encoding_dict["offset_mapping"].append(e.offsets)
|
250 |
+
if return_length:
|
251 |
+
# encoding_dict["length"].append(len(e.ids))
|
252 |
+
encoding_dict["length"].append(len(ids))
|
253 |
+
|
254 |
+
return encoding_dict, encodings
|
255 |
+
|
256 |
+
def build_inputs_with_special_tokens(
|
257 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
258 |
+
) -> List[int]:
|
259 |
+
"""
|
260 |
+
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
261 |
+
adding special tokens. A BARTpho sequence has the following format:
|
262 |
+
|
263 |
+
- single sequence: `<s> X </s>`
|
264 |
+
- pair of sequences: `<s> A </s></s> B </s>`
|
265 |
+
|
266 |
+
Args:
|
267 |
+
token_ids_0 (`List[int]`):
|
268 |
+
List of IDs to which the special tokens will be added.
|
269 |
+
token_ids_1 (`List[int]`, *optional*):
|
270 |
+
Optional second list of IDs for sequence pairs.
|
271 |
+
|
272 |
+
Returns:
|
273 |
+
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
274 |
+
"""
|
275 |
+
|
276 |
+
if token_ids_1 is None:
|
277 |
+
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
|
278 |
+
cls = [self.cls_token_id]
|
279 |
+
sep = [self.sep_token_id]
|
280 |
+
return cls + token_ids_0 + sep + sep + token_ids_1 + sep
|
281 |
+
|
282 |
+
def create_token_type_ids_from_sequences(
|
283 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
284 |
+
) -> List[int]:
|
285 |
+
"""
|
286 |
+
Create a mask from the two sequences passed to be used in a sequence-pair classification task. BARTpho does not
|
287 |
+
make use of token type ids, therefore a list of zeros is returned.
|
288 |
+
|
289 |
+
Args:
|
290 |
+
token_ids_0 (`List[int]`):
|
291 |
+
List of IDs.
|
292 |
+
token_ids_1 (`List[int]`, *optional*):
|
293 |
+
Optional second list of IDs for sequence pairs.
|
294 |
+
|
295 |
+
Returns:
|
296 |
+
`List[int]`: List of zeros.
|
297 |
+
|
298 |
+
"""
|
299 |
+
|
300 |
+
sep = [self.sep_token_id]
|
301 |
+
cls = [self.cls_token_id]
|
302 |
+
|
303 |
+
if token_ids_1 is None:
|
304 |
+
return len(cls + token_ids_0 + sep) * [0]
|
305 |
+
return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]
|
306 |
+
|
307 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
308 |
+
if not self.can_save_slow_tokenizer:
|
309 |
+
raise ValueError(
|
310 |
+
"Your fast tokenizer does not have the necessary information to save the vocabulary for a "
|
311 |
+
"slow tokenizer."
|
312 |
+
)
|
313 |
+
|
314 |
+
if not os.path.isdir(save_directory):
|
315 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory.")
|
316 |
+
return
|
317 |
+
|
318 |
+
out_vocab_file = os.path.join(
|
319 |
+
save_directory,
|
320 |
+
(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"],
|
321 |
+
)
|
322 |
+
|
323 |
+
out_monolingual_vocab_file = os.path.join(
|
324 |
+
save_directory,
|
325 |
+
(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["monolingual_vocab_file"],
|
326 |
+
)
|
327 |
+
|
328 |
+
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file):
|
329 |
+
copyfile(self.vocab_file, out_vocab_file)
|
330 |
+
|
331 |
+
if os.path.abspath(self.monolingual_vocab_file) != os.path.abspath(out_monolingual_vocab_file):
|
332 |
+
copyfile(self.monolingual_vocab_file, out_monolingual_vocab_file)
|
333 |
+
|
334 |
+
return (out_vocab_file, out_monolingual_vocab_file)
|