--- datasets: - vikp/python_code_instructions_filtered --- Code llama 7b finetuned for 1 epoch on a subset of the python code instructions dataset. Scores `.62` in humaneval with greedy decoding (matched to code llama pass@1). To use in inference, you'll need to set `trust_remote_code = True` to pick up the right rope theta value: ``` from transformers import AutoModelForCausalLM from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("vikp/llama_coder") model = AutoModelForCausalLM.from_pretrained("vikp/llama_coder", trust_remote_code=True) text = tokenizer.bos_token + """\ import socket def ping_exponential_backoff(host: str):""".lstrip() tokens = tokenizer(text, return_tensors="pt") output = model.generate(**tokens, max_new_tokens=128, do_sample=True, temperature=.1, top_p=1.0) print(tokenizer.decode(output[0], skip_special_tokens=True).strip()) ``` You can duplicate benchmark results with the bigcode eval harness: ``` git clone https://github.com/bigcode-project/bigcode-evaluation-harness.git cd bigcode-evaluation-harness pip install -e . ``` ``` accelerate launch main.py \ --model vikp/instruct_llama_7b \ --tasks humaneval \ --max_length_generation 1024 \ --temperature 0 \ --do_sample False \ --n_samples 1 \ --precision fp16 \ --allow_code_execution \ --save_generations \ --use_auth_token \ --trust_remote_code ```