Upload Moondream
Browse files- config.json +1 -1
- model.safetensors +3 -0
- moondream.py +17 -10
- vision_encoder.py +14 -28
config.json
CHANGED
|
@@ -10,6 +10,6 @@
|
|
| 10 |
"phi_config": {
|
| 11 |
"model_type": "phi-msft"
|
| 12 |
},
|
| 13 |
-
"torch_dtype": "
|
| 14 |
"transformers_version": "4.36.2"
|
| 15 |
}
|
|
|
|
| 10 |
"phi_config": {
|
| 11 |
"model_type": "phi-msft"
|
| 12 |
},
|
| 13 |
+
"torch_dtype": "float16",
|
| 14 |
"transformers_version": "4.36.2"
|
| 15 |
}
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:892e51df302d98a83974761c4f386caddbad2edd0e84f228d9935b4aed33ee25
|
| 3 |
+
size 3715037856
|
moondream.py
CHANGED
|
@@ -1,10 +1,12 @@
|
|
| 1 |
import torch
|
|
|
|
| 2 |
from .vision_encoder import VisionEncoder
|
| 3 |
-
from .text_model import TextModel
|
| 4 |
from .configuration_moondream import MoondreamConfig
|
| 5 |
from transformers import PreTrainedModel
|
| 6 |
import re
|
| 7 |
|
|
|
|
|
|
|
| 8 |
|
| 9 |
class Moondream(PreTrainedModel):
|
| 10 |
config_class = MoondreamConfig
|
|
@@ -12,11 +14,16 @@ class Moondream(PreTrainedModel):
|
|
| 12 |
def __init__(self, config):
|
| 13 |
super().__init__(config)
|
| 14 |
self.vision_encoder = VisionEncoder()
|
| 15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
@property
|
| 18 |
def device(self):
|
| 19 |
-
return self.text_model.
|
| 20 |
|
| 21 |
def encode_image(self, image):
|
| 22 |
return self.vision_encoder(image)
|
|
@@ -27,22 +34,22 @@ class Moondream(PreTrainedModel):
|
|
| 27 |
txt, return_tensors="pt", add_special_tokens=False
|
| 28 |
).input_ids.to(self.device)
|
| 29 |
|
|
|
|
|
|
|
| 30 |
# Add BOS token
|
| 31 |
embeds = []
|
| 32 |
embeds.append(
|
| 33 |
-
self.
|
| 34 |
-
(torch.tensor([[tokenizer.bos_token_id]], device=self.device))
|
| 35 |
-
)
|
| 36 |
)
|
| 37 |
|
| 38 |
if "<image>" not in prompt:
|
| 39 |
-
embeds.append(
|
| 40 |
else:
|
| 41 |
assert prompt.count("<image>") == 1
|
| 42 |
before, after = prompt.split("<image>")
|
| 43 |
-
embeds.append(
|
| 44 |
embeds.append(image_embeds.to(self.device))
|
| 45 |
-
embeds.append(
|
| 46 |
|
| 47 |
return torch.cat(embeds, dim=1)
|
| 48 |
|
|
@@ -67,7 +74,7 @@ class Moondream(PreTrainedModel):
|
|
| 67 |
|
| 68 |
with torch.no_grad():
|
| 69 |
inputs_embeds = self.input_embeds(prompt, image_embeds, tokenizer)
|
| 70 |
-
output_ids = self.text_model.
|
| 71 |
inputs_embeds=inputs_embeds, **generate_config
|
| 72 |
)
|
| 73 |
|
|
|
|
| 1 |
import torch
|
| 2 |
+
from torch import nn
|
| 3 |
from .vision_encoder import VisionEncoder
|
|
|
|
| 4 |
from .configuration_moondream import MoondreamConfig
|
| 5 |
from transformers import PreTrainedModel
|
| 6 |
import re
|
| 7 |
|
| 8 |
+
from .modeling_phi import PhiForCausalLM
|
| 9 |
+
from .configuration_moondream import PhiConfig
|
| 10 |
|
| 11 |
class Moondream(PreTrainedModel):
|
| 12 |
config_class = MoondreamConfig
|
|
|
|
| 14 |
def __init__(self, config):
|
| 15 |
super().__init__(config)
|
| 16 |
self.vision_encoder = VisionEncoder()
|
| 17 |
+
|
| 18 |
+
if type(config.phi_config) == dict:
|
| 19 |
+
phi_config = PhiConfig(**config.phi_config)
|
| 20 |
+
else:
|
| 21 |
+
phi_config = config.phi_config
|
| 22 |
+
self.text_model = PhiForCausalLM(phi_config)
|
| 23 |
|
| 24 |
@property
|
| 25 |
def device(self):
|
| 26 |
+
return self.text_model.device
|
| 27 |
|
| 28 |
def encode_image(self, image):
|
| 29 |
return self.vision_encoder(image)
|
|
|
|
| 34 |
txt, return_tensors="pt", add_special_tokens=False
|
| 35 |
).input_ids.to(self.device)
|
| 36 |
|
| 37 |
+
text_emb = self.text_model.get_input_embeddings()
|
| 38 |
+
|
| 39 |
# Add BOS token
|
| 40 |
embeds = []
|
| 41 |
embeds.append(
|
| 42 |
+
text_emb((torch.tensor([[tokenizer.bos_token_id]], device=self.device)))
|
|
|
|
|
|
|
| 43 |
)
|
| 44 |
|
| 45 |
if "<image>" not in prompt:
|
| 46 |
+
embeds.append(text_emb(_tokenize(prompt)))
|
| 47 |
else:
|
| 48 |
assert prompt.count("<image>") == 1
|
| 49 |
before, after = prompt.split("<image>")
|
| 50 |
+
embeds.append(text_emb(_tokenize(f"{before}<image>")))
|
| 51 |
embeds.append(image_embeds.to(self.device))
|
| 52 |
+
embeds.append(text_emb(_tokenize(f"</image>{after}")))
|
| 53 |
|
| 54 |
return torch.cat(embeds, dim=1)
|
| 55 |
|
|
|
|
| 74 |
|
| 75 |
with torch.no_grad():
|
| 76 |
inputs_embeds = self.input_embeds(prompt, image_embeds, tokenizer)
|
| 77 |
+
output_ids = self.text_model.generate(
|
| 78 |
inputs_embeds=inputs_embeds, **generate_config
|
| 79 |
)
|
| 80 |
|
vision_encoder.py
CHANGED
|
@@ -80,23 +80,18 @@ class VisionProjection(nn.Module):
|
|
| 80 |
model_dim = 2048
|
| 81 |
hidden_dim = model_dim * 4
|
| 82 |
|
| 83 |
-
self.
|
| 84 |
-
self.mlp2 = MLP(model_dim, hidden_dim, model_dim)
|
| 85 |
-
self.ln = nn.LayerNorm(model_dim)
|
| 86 |
|
| 87 |
@property
|
| 88 |
def device(self):
|
| 89 |
-
return self.
|
| 90 |
|
| 91 |
def forward(self, x):
|
| 92 |
-
|
| 93 |
-
x = self.ln(x)
|
| 94 |
-
x = x + self.mlp2(x)
|
| 95 |
-
return x
|
| 96 |
|
| 97 |
|
| 98 |
-
class
|
| 99 |
-
def __init__(self):
|
| 100 |
super().__init__()
|
| 101 |
|
| 102 |
self.encoder = ModelHolder(
|
|
@@ -109,17 +104,6 @@ class VisionTower(nn.Module):
|
|
| 109 |
|
| 110 |
self.projection = VisionProjection()
|
| 111 |
|
| 112 |
-
def forward(self, x):
|
| 113 |
-
x = self.encoder(x)
|
| 114 |
-
x = self.projection(x)
|
| 115 |
-
return x
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
class VisionEncoder(nn.Module):
|
| 119 |
-
def __init__(self) -> None:
|
| 120 |
-
super().__init__()
|
| 121 |
-
|
| 122 |
-
self.model = VisionTower()
|
| 123 |
self.preprocess = Compose(
|
| 124 |
[
|
| 125 |
Resize(size=(378, 378), interpolation=InterpolationMode.BICUBIC),
|
|
@@ -131,20 +115,22 @@ class VisionEncoder(nn.Module):
|
|
| 131 |
|
| 132 |
@property
|
| 133 |
def device(self):
|
| 134 |
-
return self.
|
| 135 |
|
| 136 |
@property
|
| 137 |
def dtype(self):
|
| 138 |
-
return self.
|
| 139 |
|
| 140 |
def __call__(self, image: Image) -> torch.Tensor:
|
| 141 |
with torch.no_grad():
|
| 142 |
-
|
| 143 |
self.preprocess(image.convert("RGB"))
|
| 144 |
.unsqueeze(0)
|
| 145 |
.to(self.device, dtype=self.dtype)
|
| 146 |
)
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
)
|
| 150 |
-
|
|
|
|
|
|
|
|
|
| 80 |
model_dim = 2048
|
| 81 |
hidden_dim = model_dim * 4
|
| 82 |
|
| 83 |
+
self.mlp = MLP(image_embedding_dim, hidden_dim, model_dim)
|
|
|
|
|
|
|
| 84 |
|
| 85 |
@property
|
| 86 |
def device(self):
|
| 87 |
+
return self.mlp.fc1.weight.device
|
| 88 |
|
| 89 |
def forward(self, x):
|
| 90 |
+
return self.mlp(x)
|
|
|
|
|
|
|
|
|
|
| 91 |
|
| 92 |
|
| 93 |
+
class VisionEncoder(nn.Module):
|
| 94 |
+
def __init__(self) -> None:
|
| 95 |
super().__init__()
|
| 96 |
|
| 97 |
self.encoder = ModelHolder(
|
|
|
|
| 104 |
|
| 105 |
self.projection = VisionProjection()
|
| 106 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 107 |
self.preprocess = Compose(
|
| 108 |
[
|
| 109 |
Resize(size=(378, 378), interpolation=InterpolationMode.BICUBIC),
|
|
|
|
| 115 |
|
| 116 |
@property
|
| 117 |
def device(self):
|
| 118 |
+
return self.projection.mlp.fc1.weight.device
|
| 119 |
|
| 120 |
@property
|
| 121 |
def dtype(self):
|
| 122 |
+
return self.projection.mlp.fc1.weight.dtype
|
| 123 |
|
| 124 |
def __call__(self, image: Image) -> torch.Tensor:
|
| 125 |
with torch.no_grad():
|
| 126 |
+
x = (
|
| 127 |
self.preprocess(image.convert("RGB"))
|
| 128 |
.unsqueeze(0)
|
| 129 |
.to(self.device, dtype=self.dtype)
|
| 130 |
)
|
| 131 |
+
x = rearrange(x, "b c (h p1) (w p2) -> b (h w) (c p1 p2)", p1=14, p2=14)
|
| 132 |
+
|
| 133 |
+
x = self.encoder(x)
|
| 134 |
+
x = self.projection(x)
|
| 135 |
+
|
| 136 |
+
return x
|