---
library_name: transformers
license: apache-2.0
base_model: vikas117/finetuned-ai-real-beit
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: finetuned-ai-real-beit
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: train
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.9338842975206612
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# finetuned-ai-real-beit

This model is a fine-tuned version of [vikas117/finetuned-ai-real-beit](https://huggingface.co/vikas117/finetuned-ai-real-beit) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2805
- Accuracy: 0.9339

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 2
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:--------:|
| 0.4366        | 0.4545 | 10   | 0.0494          | 0.9752   |
| 0.0713        | 0.9091 | 20   | 0.1101          | 0.9587   |
| 0.0302        | 1.3636 | 30   | 0.2225          | 0.9587   |
| 0.0531        | 1.8182 | 40   | 0.2805          | 0.9339   |


### Framework versions

- Transformers 4.47.1
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0