---
language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:6300
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: BAAI/bge-base-en-v1.5
widget:
- source_sentence: Our effective tax rate for fiscal years 2023 and 2022 was 19% and
13%, respectively.
sentences:
- What does the Corporate and Other segment include in its composition?
- What was the effective tax rate for Microsoft in fiscal year 2023?
- What roles did Elizabeth Rutledge hold before being appointed as Chief Marketing
Officer in February 2018?
- source_sentence: Many factors are considered when assessing whether it is more likely
than not that the deferred tax assets will be realized, including recent cumulative
earnings, expectations of future taxable income, carryforward periods and other
relevant quantitative and qualitative factors.
sentences:
- What factors are considered when evaluating the realization of deferred tax assets?
- What are the contents of Item 8 in the financial document?
- Are goodwill and indefinite-lived intangible assets amortized?
- source_sentence: Cost of net revenues represents costs associated with customer
support, site operations, and payment processing. Significant components of these
costs primarily consist of employee compensation (including stock-based compensation),
contractor costs, facilities costs, depreciation of equipment and amortization
expense, bank transaction fees, credit card interchange and assessment fees, authentication
costs, shipping costs and digital services tax.
sentences:
- What was the total percentage of U.S. dialysis patient service revenues coming
from government-based programs in 2023?
- What are the key components of cost of net revenues?
- What elements define Ford Credit's balance sheet liquidity profile?
- source_sentence: Net revenue from outside of the United States decreased 15.5% to
$34.9 billion in fiscal year 2023.
sentences:
- How did the company's net revenue perform internationally in fiscal year 2023?
- What was the fair value of money market mutual funds measured at as of January
31, 2023 and how was it categorized in the fair value hierarchy?
- How much did professional services expenses increase in 2023 from the previous
year?
- source_sentence: Marketplace revenue increased $86.3 million to $2.0 billion in
the year ended December 31, 2023 compared to the year ended December 31, 2022.
sentences:
- What were the main factors considered in the audit process to evaluate the self-insurance
reserve?
- How much did Marketplace revenue increase in the year ended December 31, 2023?
- Why did operations and support expenses decrease in 2023, and what factors offset
this decrease?
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: BGE base Financial Matryoshka
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.7
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8285714285714286
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8785714285714286
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9085714285714286
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.27619047619047615
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17571428571428568
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09085714285714284
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8285714285714286
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8785714285714286
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9085714285714286
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8070713920635244
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.774145124716553
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7778677437532947
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.6942857142857143
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.83
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8728571428571429
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9042857142857142
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6942857142857143
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.27666666666666667
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17457142857142854
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09042857142857143
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6942857142857143
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.83
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8728571428571429
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9042857142857142
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8031148082413071
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.770209750566893
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7742865136346454
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.6828571428571428
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8242857142857143
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8657142857142858
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9042857142857142
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6828571428571428
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2747619047619047
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17314285714285713
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09042857142857143
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6828571428571428
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8242857142857143
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8657142857142858
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9042857142857142
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7969921030232127
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.762270975056689
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7658165867130817
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.68
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8085714285714286
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8514285714285714
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8842857142857142
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.68
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2695238095238095
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17028571428571426
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08842857142857141
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.68
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8085714285714286
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8514285714285714
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8842857142857142
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7840025892817639
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.751556689342403
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7563834249655896
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.6371428571428571
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.7814285714285715
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8271428571428572
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8728571428571429
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6371428571428571
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2604761904761905
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1654285714285714
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08728571428571427
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6371428571428571
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.7814285714285715
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8271428571428572
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8728571428571429
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7566246856089167
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7193163265306118
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7237471572016445
name: Cosine Map@100
---
# BGE base Financial Matryoshka
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5)
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- json
- **Language:** en
- **License:** apache-2.0
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("viggypoker1/bge-base-financial-matryoshka")
# Run inference
sentences = [
'Marketplace revenue increased $86.3 million to $2.0 billion in the year ended December 31, 2023 compared to the year ended December 31, 2022.',
'How much did Marketplace revenue increase in the year ended December 31, 2023?',
'Why did operations and support expenses decrease in 2023, and what factors offset this decrease?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Information Retrieval
* Dataset: `dim_768`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.7 |
| cosine_accuracy@3 | 0.8286 |
| cosine_accuracy@5 | 0.8786 |
| cosine_accuracy@10 | 0.9086 |
| cosine_precision@1 | 0.7 |
| cosine_precision@3 | 0.2762 |
| cosine_precision@5 | 0.1757 |
| cosine_precision@10 | 0.0909 |
| cosine_recall@1 | 0.7 |
| cosine_recall@3 | 0.8286 |
| cosine_recall@5 | 0.8786 |
| cosine_recall@10 | 0.9086 |
| cosine_ndcg@10 | 0.8071 |
| cosine_mrr@10 | 0.7741 |
| **cosine_map@100** | **0.7779** |
#### Information Retrieval
* Dataset: `dim_512`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.6943 |
| cosine_accuracy@3 | 0.83 |
| cosine_accuracy@5 | 0.8729 |
| cosine_accuracy@10 | 0.9043 |
| cosine_precision@1 | 0.6943 |
| cosine_precision@3 | 0.2767 |
| cosine_precision@5 | 0.1746 |
| cosine_precision@10 | 0.0904 |
| cosine_recall@1 | 0.6943 |
| cosine_recall@3 | 0.83 |
| cosine_recall@5 | 0.8729 |
| cosine_recall@10 | 0.9043 |
| cosine_ndcg@10 | 0.8031 |
| cosine_mrr@10 | 0.7702 |
| **cosine_map@100** | **0.7743** |
#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.6829 |
| cosine_accuracy@3 | 0.8243 |
| cosine_accuracy@5 | 0.8657 |
| cosine_accuracy@10 | 0.9043 |
| cosine_precision@1 | 0.6829 |
| cosine_precision@3 | 0.2748 |
| cosine_precision@5 | 0.1731 |
| cosine_precision@10 | 0.0904 |
| cosine_recall@1 | 0.6829 |
| cosine_recall@3 | 0.8243 |
| cosine_recall@5 | 0.8657 |
| cosine_recall@10 | 0.9043 |
| cosine_ndcg@10 | 0.797 |
| cosine_mrr@10 | 0.7623 |
| **cosine_map@100** | **0.7658** |
#### Information Retrieval
* Dataset: `dim_128`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.68 |
| cosine_accuracy@3 | 0.8086 |
| cosine_accuracy@5 | 0.8514 |
| cosine_accuracy@10 | 0.8843 |
| cosine_precision@1 | 0.68 |
| cosine_precision@3 | 0.2695 |
| cosine_precision@5 | 0.1703 |
| cosine_precision@10 | 0.0884 |
| cosine_recall@1 | 0.68 |
| cosine_recall@3 | 0.8086 |
| cosine_recall@5 | 0.8514 |
| cosine_recall@10 | 0.8843 |
| cosine_ndcg@10 | 0.784 |
| cosine_mrr@10 | 0.7516 |
| **cosine_map@100** | **0.7564** |
#### Information Retrieval
* Dataset: `dim_64`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.6371 |
| cosine_accuracy@3 | 0.7814 |
| cosine_accuracy@5 | 0.8271 |
| cosine_accuracy@10 | 0.8729 |
| cosine_precision@1 | 0.6371 |
| cosine_precision@3 | 0.2605 |
| cosine_precision@5 | 0.1654 |
| cosine_precision@10 | 0.0873 |
| cosine_recall@1 | 0.6371 |
| cosine_recall@3 | 0.7814 |
| cosine_recall@5 | 0.8271 |
| cosine_recall@10 | 0.8729 |
| cosine_ndcg@10 | 0.7566 |
| cosine_mrr@10 | 0.7193 |
| **cosine_map@100** | **0.7237** |
## Training Details
### Training Dataset
#### json
* Dataset: json
* Size: 6,300 training samples
* Columns: positive
and anchor
* Approximate statistics based on the first 1000 samples:
| | positive | anchor |
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details |
GM Financial's penetration of our retail sales in the U.S. was 42% in the year ended December 31, 2023, compared to 43% in the corresponding period in 2022.
| How did the penetration rate of GM Financial's retail sales in the U.S. change from 2022 to 2023?
|
| Net cash provided by operating activities decreased by $2.0 billion in fiscal 2022 compared to fiscal 2021.
| How did the cash flow from operating activities change in fiscal 2022 compared to fiscal 2021?
|
| Total revenues increased $8.2 billion, or 7.5%, in 2023 compared to 2022. The increase was primarily driven by pharmacy drug mix, increased prescription volume, brand inflation, and increased contributions from vaccinations.
| How much did total revenues increase in 2023 compared to the previous year?
|
* Loss: [MatryoshkaLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Evaluation Dataset
#### json
* Dataset: json
* Size: 700 evaluation samples
* Columns: positive
and anchor
* Approximate statistics based on the first 700 samples:
| | positive | anchor |
|:--------|:------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | Using these constant rates, total revenue and advertising revenue would have been $374 million and $379 million lower than actual total revenue and advertising revenue, respectively, for the full year 2023.
| How much would total revenue and advertising revenue have been lower in 2023 using constant foreign exchange rates compared to actual figures?
|
| Interest expense increased $42.9 million to $348.8 million for the year ended December 31, 2023, compared to $305.9 million during the year ended December 31, 2022.
| What was the total interest expense for the year ended December 31, 2023?
|
| Net cash provided by operating activities increased $183.3 million in 2022 compared to 2021 primarily as a result of higher current year earnings, net of non-cash items, and smaller decreases in liability balances, partially offset by higher inventory levels and a smaller increase in accounts payable.
| How much did net cash provided by operating activities increase in 2022 compared to 2021?
|
* Loss: [MatryoshkaLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 4
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `fp16`: True
- `tf32`: False
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates
#### All Hyperparameters