---
language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:311351
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: BAAI/bge-base-en-v1.5
widget:
- source_sentence: What specialized services does Equifax's Workforce Solutions segment
offer?
sentences:
- 'Supermarkets are generally operated under one of the following formats: combination
food and drug stores (''combo stores''); multi-department stores; marketplace
stores; or price impact warehouses.'
- Workforce Solutions — provides services enabling customers to verify income, employment,
educational history, criminal justice data, healthcare professional licensure
and sanctions of people in the U.S. (Verification Services), as well as providing
our employer customers with services which include unemployment claims management,
I-9 and onboarding services, Affordable Care Act compliance management, tax credits
and incentives and other complementary employment-based transaction services (Employer
Services)
- International Business Machines Corporation (IBM or the company) was incorporated
in the State of New York on June 16, 1911, as the Computing-Tabulating-Recording
Co. (C-T-R).
- source_sentence: What factors contributed to the increase in operating income for
the Company in 2023?
sentences:
- Operating income increased $5.8 billion, or 72.8%, in 2023 compared to 2022. The
increase in operating income was primarily driven by the absence of $5.8 billion
of opioid litigation charges recorded in 2022 and increases in the Pharmacy &
Consumer Wellness segment, primarily driven by the absence of a $2.5 billion loss
on assets held for sale recorded in 2022 related to the write-down of the Company’s
Omnicare® long-term care business which was partially offset by continued pharmacy
reimbursement pressure and decreased COVID-19 vaccinations and diagnostic testing
compared to 2022, as well as an increase in the Health Services segment.
- Pennsylvania law requires that the Office of Attorney General be provided advance
notice of any transaction that would result in Hershey Trust Company, as trustee
for the Trust, no longer having voting control of the Company.
- In 2023, UnitedHealthcare invested $3,386 million in property, equipment, and
capitalized software.
- source_sentence: What event took place in September 2021 involving the Company and
the counsel representing plaintiffs?
sentences:
- Item 8, which requires the inclusion of financial statements and supplementary
data, directs readers to Item 15(a) for this information.
- In September 2021, the Company entered into a settlement in principle with the
counsel representing plaintiffs in this matter and in substantially all of the
outstanding cases in the United States. The costs associated with this and other
settlements are reflected in the Company’s accruals.
- GM empowers employees to 'Speak Up for Safety' through the Employee Safety Concern
Process which makes it easier for employees to report potential safety issues
or suggest improvements without fear of retaliation and ensures their safety every
day.
- source_sentence: What was the total cash consideration for Comcast's acquisition
of Masergy in October 2021?
sentences:
- In October 2021, Comcast acquired Masergy, a provider of software-defined networking
and cloud platforms for global enterprises, for a total cash consideration of
$1.2 billion.
- The net unit growth for Hilton in the year ended December 31, 2023, was 4.9 percent.
- Financial Statements and Supplementary Data are addressed in Item 8 of the financial
document.
- source_sentence: What does the term 'Acquired brands' refer to and how does it affect
the reported volumes?
sentences:
- Phrases such as 'anticipates', 'believes', 'estimates', 'seeks', 'expects', 'plans',
'intends', 'remains', 'positions', and similar expressions are intended to identify
forward-looking statements related to the company or management.
- '''Acquired brands'' refers to brands acquired during the past 12 months. Typically,
the Company has not reported unit case volume or recognized concentrate sales
volume related to acquired brands in periods prior to the closing of a transaction.
Therefore, the unit case volume and concentrate sales volume related to an acquired
brand are incremental to prior year volume.'
- The Company made matching contributions to employee accounts in connection with
the 401(k) plan of $37.3 million in fiscal 2023, $37.9 million in fiscal 2022
and $34.1 million in fiscal 2021.
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: Vignesh finetuned bge2
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.7
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8414285714285714
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8785714285714286
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.92
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.28047619047619043
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17571428571428568
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09199999999999998
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8414285714285714
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8785714285714286
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.92
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8129831819187487
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7784263038548753
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7817486756411115
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.6914285714285714
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.84
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8857142857142857
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9242857142857143
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6914285714285714
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.28
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1771428571428571
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09242857142857142
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6914285714285714
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.84
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8857142857142857
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9242857142857143
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.812081821657879
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7757766439909298
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7786577115899984
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.69
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8285714285714286
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8728571428571429
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9142857142857143
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.69
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.27619047619047615
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17457142857142854
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09142857142857141
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.69
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8285714285714286
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8728571428571429
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9142857142857143
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8040804108630832
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.768536281179138
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7719825285723502
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.67
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8171428571428572
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8657142857142858
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9071428571428571
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.67
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2723809523809524
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17314285714285713
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.0907142857142857
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.67
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8171428571428572
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8657142857142858
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9071428571428571
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7904898848742749
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7528854875283444
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7566672358984098
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.6314285714285715
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.7942857142857143
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8385714285714285
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8828571428571429
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6314285714285715
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.26476190476190475
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.16771428571428568
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08828571428571427
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6314285714285715
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.7942857142857143
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8385714285714285
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8828571428571429
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7591380417514834
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7191768707482988
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7235543749437979
name: Cosine Map@100
---
# Vignesh finetuned bge2
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5)
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- json
- **Language:** en
- **License:** apache-2.0
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("viggypoker1/Vignesh-finetuned-bge2")
# Run inference
sentences = [
"What does the term 'Acquired brands' refer to and how does it affect the reported volumes?",
"'Acquired brands' refers to brands acquired during the past 12 months. Typically, the Company has not reported unit case volume or recognized concentrate sales volume related to acquired brands in periods prior to the closing of a transaction. Therefore, the unit case volume and concentrate sales volume related to an acquired brand are incremental to prior year volume.",
'The Company made matching contributions to employee accounts in connection with the 401(k) plan of $37.3 million in fiscal 2023, $37.9 million in fiscal 2022 and $34.1 million in fiscal 2021.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Information Retrieval
* Dataset: `dim_768`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.7 |
| cosine_accuracy@3 | 0.8414 |
| cosine_accuracy@5 | 0.8786 |
| cosine_accuracy@10 | 0.92 |
| cosine_precision@1 | 0.7 |
| cosine_precision@3 | 0.2805 |
| cosine_precision@5 | 0.1757 |
| cosine_precision@10 | 0.092 |
| cosine_recall@1 | 0.7 |
| cosine_recall@3 | 0.8414 |
| cosine_recall@5 | 0.8786 |
| cosine_recall@10 | 0.92 |
| cosine_ndcg@10 | 0.813 |
| cosine_mrr@10 | 0.7784 |
| **cosine_map@100** | **0.7817** |
#### Information Retrieval
* Dataset: `dim_512`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.6914 |
| cosine_accuracy@3 | 0.84 |
| cosine_accuracy@5 | 0.8857 |
| cosine_accuracy@10 | 0.9243 |
| cosine_precision@1 | 0.6914 |
| cosine_precision@3 | 0.28 |
| cosine_precision@5 | 0.1771 |
| cosine_precision@10 | 0.0924 |
| cosine_recall@1 | 0.6914 |
| cosine_recall@3 | 0.84 |
| cosine_recall@5 | 0.8857 |
| cosine_recall@10 | 0.9243 |
| cosine_ndcg@10 | 0.8121 |
| cosine_mrr@10 | 0.7758 |
| **cosine_map@100** | **0.7787** |
#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:----------|
| cosine_accuracy@1 | 0.69 |
| cosine_accuracy@3 | 0.8286 |
| cosine_accuracy@5 | 0.8729 |
| cosine_accuracy@10 | 0.9143 |
| cosine_precision@1 | 0.69 |
| cosine_precision@3 | 0.2762 |
| cosine_precision@5 | 0.1746 |
| cosine_precision@10 | 0.0914 |
| cosine_recall@1 | 0.69 |
| cosine_recall@3 | 0.8286 |
| cosine_recall@5 | 0.8729 |
| cosine_recall@10 | 0.9143 |
| cosine_ndcg@10 | 0.8041 |
| cosine_mrr@10 | 0.7685 |
| **cosine_map@100** | **0.772** |
#### Information Retrieval
* Dataset: `dim_128`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.67 |
| cosine_accuracy@3 | 0.8171 |
| cosine_accuracy@5 | 0.8657 |
| cosine_accuracy@10 | 0.9071 |
| cosine_precision@1 | 0.67 |
| cosine_precision@3 | 0.2724 |
| cosine_precision@5 | 0.1731 |
| cosine_precision@10 | 0.0907 |
| cosine_recall@1 | 0.67 |
| cosine_recall@3 | 0.8171 |
| cosine_recall@5 | 0.8657 |
| cosine_recall@10 | 0.9071 |
| cosine_ndcg@10 | 0.7905 |
| cosine_mrr@10 | 0.7529 |
| **cosine_map@100** | **0.7567** |
#### Information Retrieval
* Dataset: `dim_64`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.6314 |
| cosine_accuracy@3 | 0.7943 |
| cosine_accuracy@5 | 0.8386 |
| cosine_accuracy@10 | 0.8829 |
| cosine_precision@1 | 0.6314 |
| cosine_precision@3 | 0.2648 |
| cosine_precision@5 | 0.1677 |
| cosine_precision@10 | 0.0883 |
| cosine_recall@1 | 0.6314 |
| cosine_recall@3 | 0.7943 |
| cosine_recall@5 | 0.8386 |
| cosine_recall@10 | 0.8829 |
| cosine_ndcg@10 | 0.7591 |
| cosine_mrr@10 | 0.7192 |
| **cosine_map@100** | **0.7236** |
## Training Details
### Training Dataset
#### json
* Dataset: json
* Size: 311,351 training samples
* Columns: anchor
and positive
* Approximate statistics based on the first 1000 samples:
| | anchor | positive |
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details |
What section from item 8 addresses financial information?
| Item 8 covers 'Financial Statements and Supplementary Data' relating to financial information.
|
| What was the percentage increase in interest income from 2022 to 2023?
| Interest income increased $769 million, or 259%, in the year ended December 31, 2023 as compared to the year ended December 31, 2022. This increase was primarily due to higher interest earned on our cash and cash equivalents and short-term investments in the year ended December 31, 2023 as compared to the prior year due to rising interest rates and our increasing portfolio balance.
|
| What was the operating margin for UnitedHealthcare in 2023?
| The operating margin for UnitedHealthcare in 2023 was reported as 5.8%.
|
* Loss: [MatryoshkaLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Evaluation Dataset
#### json
* Dataset: json
* Size: 700 evaluation samples
* Columns: anchor
and positive
* Approximate statistics based on the first 700 samples:
| | anchor | positive |
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | What was the maximum borrowing capacity available from the Federal Home Loan Bank of Boston as of December 31, 2023?
| The maximum borrowing capacity available from the FHLBB as of December 31, 2023 was approximately $1.0 billion.
|
| What new compliance requirement was established by the CFPB's final rule issued on March 30, 2023, regarding small business credit applications?
| On March 30, 2023, the CFPB adopted a final rule requiring covered financial institutions, such as us, to collect and report data to the CFPB regarding certain small business credit applications.
|
| What potential impact could continued geopolitical tensions have on the business?
| While the ongoing Russia-Ukraine and Israel conflicts are still evolving and outcomes remain uncertain, the business does not expect the resulting challenging macroeconomic conditions to have a material impact currently. However, if conflicts continue or worsen, it could lead to greater disruptions and uncertainty, negatively impacting the business.
|
* Loss: [MatryoshkaLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `per_device_train_batch_size`: 128
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 10
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `fp16`: True
- `tf32`: False
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates
#### All Hyperparameters