File size: 1,417 Bytes
bf05038 af0b9eb bf05038 423391b 91fe3de bf05038 9c15186 72b3dac af0b9eb bf05038 a6b4068 454bace 39233ec 454bace 6506ad9 454bace 423391b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
---
license: apache-2.0
---
# FlowOcc3D (3D Occypancy Flow Dataset)
<img src="./FlowOcc3D.jpg" width="800"/>
Download [FlowOcc3D](https://huggingface.co/viewformer/ViewFormer-Occ/blob/main/occ_flow_sparse_ext.zip). Unzip it in `./data/nuscenes`.
Our FlowOcc3D assigns a flow vector to each foreground occupancy of [Occ3D](https://github.com/CVPR2023-3D-Occupancy-Prediction/CVPR2023-3D-Occupancy-Prediction).
Here we briefly introduce how to use FlowOcc3D. We store the flow and index of each foreground voxel in the `xxx.bin` file and `xxx_idx.bin` file.
```python
W, H, Z = 200, 200, 16
sample_idx = results['sample_idx'] # nuScenes sample token
data_path = os.path.join('./data/nuscenes', 'occ_flow_sparse_ext', sample_idx)
occ_flow = np.ones((W*H*Z, 2)) * pad_value # pad_value could be zero
sparse_flow = np.fromfile(data_path + '.bin', dtype=np.float16).reshape(-1, 3)[:, :2]
sparse_idx = np.fromfile(data_path + '_idx.bin', dtype=np.int32).reshape(-1)
occ_flow[sparse_idx] = sparse_flow
occ_flow = occ_flow.reshape(W, H, Z, 2)
```
## Citation
```bibtex
@article{li2024viewformer,
title={ViewFormer: Exploring Spatiotemporal Modeling for Multi-View 3D Occupancy Perception via View-Guided Transformers},
author={Jinke Li and Xiao He and Chonghua Zhou and Xiaoqiang Cheng and Yang Wen and Dan Zhang},
journal={arXiv preprint arXiv:2405.04299},
year={2024},
}
``` |