Upload PPO LunarLander-v2 trained agent
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +16 -16
- ppo-LunarLander-v2/policy.optimizer.pth +1 -1
- ppo-LunarLander-v2/policy.pth +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 263.99 +/- 17.58
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7e498fb1fd90>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e498fb1fe20>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e498fb1feb0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e498fb1ff40>", "_build": "<function ActorCriticPolicy._build at 0x7e498fb28040>", "forward": "<function ActorCriticPolicy.forward at 0x7e498fb280d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e498fb28160>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e498fb281f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7e498fb28280>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e498fb28310>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e498fb283a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e498fb28430>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e498fccaa80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1706086745331231222, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJohfb17Yom6r82bOnETlzXp1NA6aUi1uQAAgD8AAAAATb0DPaGCtj915cI+HTYovDQiJjyuJ9k9AAAAAAAAAAAAg549KXAxug2Zebre3y00NiKPu+abjzkAAIA/AAAAAGY0WT5klm4+kw99vrYdZr7jhIq9EsRxvQAAAAAAAAAATZKgPfYwD7qZIIm46WKVtbOlIzte4KQ3AACAPwAAAABNB2w+9U0pP3p427wgzNG+Qjs2PgUKsL0AAAAAAAAAAIAPlr2/xVc+IkBJPnKJTL6V9z89GiO9PQAAAAAAAAAAjWKTPYPweLwaXwa9pZXWPFHY4b2q/Kk9AACAPwAAgD/NM9I84QyHutrWzLQJl06wVRFXu/gX7zMAAIA/AACAP2Yw3D1cGyS6Nmx5uB9OxrOJRK47TuqSNwAAgD8AAIA/5rAMvdxppz6QWQg9IdyJvr0vp72hdEk8AAAAAAAAAACNrOi94TCZutJbd7cvWMAzS649ukm/jDYAAIA/AACAP43ghD3ljBI++IpJvXvcer47wh89RhNgPQAAAAAAAAAAOlKuPidyNz8g3uq9OrPOvhqzbz5LX4m+AAAAAAAAAADNTeO94eihupAY5bpgnQq2WCmFuhTmAzoAAIA/AAAAAOZHuz0hQaC8VA2cvfqItb1eKQ8+TjCRPgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVCwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG+TG+TNdJKMAWyUTRQBjAF0lEdAlAFhKL8763V9lChoBkdAcBpQP7N0NmgHS/ZoCEdAlAFhHskY43V9lChoBkdAcUErNGEwnGgHS/hoCEdAlAGTVMEidXV9lChoBkdAckZMYuTRpmgHTUUBaAhHQJQCfQ9ic5N1fZQoaAZHQG6dziKiwjdoB0v5aAhHQJQC2CWeHzp1fZQoaAZHwC1mMERradtoB0t/aAhHQJQDJtvXK8t1fZQoaAZHQHCmFfZ26kJoB0vuaAhHQJQEObvw3Hd1fZQoaAZHQHFs0THsC1ZoB0vVaAhHQJQFaXrt3Oh1fZQoaAZHQFSmpvgm7atoB0u4aAhHQJQFciILw4N1fZQoaAZHQHCRgCwKSgZoB01EAWgIR0CUBgK7ZnL8dX2UKGgGR0Byrfp5eJHiaAdL6WgIR0CUBp9RJmNBdX2UKGgGR0Byx2Q7tAs1aAdNvgFoCEdAlAhqeK8+R3V9lChoBkdAb753Fkxyn2gHS+FoCEdAlAiareZXuHV9lChoBkdAcSbbVBlcyGgHS/NoCEdAlAluYUnG83V9lChoBkdAcRLN8ma6SWgHS9toCEdAlAmf/io86nV9lChoBkdAcT+nJ1aGH2gHTWYBaAhHQJQKf/JeVs11fZQoaAZHQHDXGY8dPtVoB0vUaAhHQJQLTSWqtHR1fZQoaAZHQHBFV0DEFW5oB00JAWgIR0CUC393bEgodX2UKGgGR0Bw4ONDMNc4aAdNAAFoCEdAlAuOWSlnAnV9lChoBkdAcnannMdLhGgHTUABaAhHQJQLoosqaw51fZQoaAZHQHB4ijDbah9oB0vqaAhHQJQM8/C66J91fZQoaAZHQG55qNyYG+toB0vkaAhHQJQNP/giu+11fZQoaAZHQHP+M9wFTvRoB00JAWgIR0CUDdS9du50dX2UKGgGR0ByEm3I+4b0aAdNAAFoCEdAlA61FYuCgHV9lChoBkdAchTyylenh2gHTfcBaAhHQJQOw0zj3mF1fZQoaAZHQGkO2sijcmBoB013AmgIR0CUDs8NhE0BdX2UKGgGR0BySMsg+yJLaAdL3mgIR0CUDznGsFMadX2UKGgGR0BJJCDEm6XjaAdLxGgIR0CUD1auOjqOdX2UKGgGR0BxcvrleWv9aAdL6mgIR0CUEkw0fozOdX2UKGgGR0BvcLltCRfXaAdL5mgIR0CUEoqiXY16dX2UKGgGR0BzK+b+cYqHaAdNFAFoCEdAlBLaeK8+R3V9lChoBkdAcOC+7Dl5nmgHTQABaAhHQJQTRtP557h1fZQoaAZHQHCiYZ62OQ1oB01AAWgIR0CUE3EkB0ZFdX2UKGgGR0ByoaB+WnjyaAdNcQFoCEdAlBP0UTL4e3V9lChoBkdAcO47ihnJ1mgHS+poCEdAlBX7wBo243V9lChoBkdAcbChxYJVsGgHS+ZoCEdAlBaPZ26kI3V9lChoBkdAclj4FA3T/mgHTQQBaAhHQJQXE1qFh5R1fZQoaAZHQEanrIo3JgdoB0ucaAhHQJQYKZgG8mN1fZQoaAZHQHGZ8DW9US9oB00eAWgIR0CUGMhQm/nGdX2UKGgGR0BHOxEWqLjxaAdLwGgIR0CUGucHGCI2dX2UKGgGR0Bwz7cdo372aAdL2mgIR0CUGwlTWGypdX2UKGgGR0BuIrCcf/3naAdL4WgIR0CUG3pGFzuGdX2UKGgGR0BthbrRjSXuaAdNeQFoCEdAlBt6nrIHT3V9lChoBkdAbwu0gr6LwWgHTRUBaAhHQJQcWdK/VRV1fZQoaAZHQFyK2Rq46OpoB03oA2gIR0CUMki8FpwkdX2UKGgGR0BwcjX/YJ3QaAdL+mgIR0CUMl0x/NJOdX2UKGgGR0BwjbZRKpT/aAdL92gIR0CUMrxI8QqadX2UKGgGR0BvMuPq9oN/aAdNaQJoCEdAlDLMImgJ1XV9lChoBkdAcKWwn6VMVWgHS89oCEdAlDL1RceKbnV9lChoBkdAcewxQBPsRmgHTZEBaAhHQJQzHRUm2LJ1fZQoaAZHQHIhvkWAPNFoB001AWgIR0CUM8R/mT1TdX2UKGgGR0ByOOEh7mdRaAdNVQJoCEdAlDP30kGA1HV9lChoBkdAcN2srNGEwmgHS8poCEdAlDTc4DLbH3V9lChoBkdAbSpkXDWK/GgHS+VoCEdAlDWgB91EE3V9lChoBkdAc1JIwM6RyWgHTX8CaAhHQJQ1v5wfhdd1fZQoaAZHQHIW4sd1dPdoB0voaAhHQJQ2c0SAYpF1fZQoaAZHQFYcTLns9jhoB0ubaAhHQJQ3UmrsByV1fZQoaAZHQHCVX5zo2XNoB018AWgIR0CUN4grH2h7dX2UKGgGR0A3aN2TxG2DaAdLtGgIR0CUN6LX+VC5dX2UKGgGR0BxUiLvTgEVaAdNSAFoCEdAlDghWHUMHHV9lChoBkdAbgcLaVUuMGgHS9BoCEdAlDh1DneSCHV9lChoBkdAbrVSKm8/U2gHS/toCEdAlDodbPhQ33V9lChoBkdAcO4E7nxJ/WgHTSgBaAhHQJQ79/kNnXd1fZQoaAZHQHFsoaYNRWNoB0vxaAhHQJQ8SXKKYRd1fZQoaAZHQHJRNQwblzVoB00xAWgIR0CUPHYbsF+vdX2UKGgGR0BwUHwjMV1waAdL3WgIR0CUPIfUWl/IdX2UKGgGR0BxPmdd3SrpaAdL22gIR0CUPJma6STydX2UKGgGR0BBh54Oc2BKaAdLnmgIR0CUPU7cwg1WdX2UKGgGR0Bv1PqAz544aAdL4GgIR0CUPY4JNTLodX2UKGgGR0BPzJZwGW2PaAdLsmgIR0CUPlcu8K5TdX2UKGgGR0BxGZwsGxD9aAdL7GgIR0CUP0rzoUzsdX2UKGgGR0BxGLhGYrrgaAdNLQJoCEdAlD+Y7V8TjHV9lChoBkdAXz0wN9YwI2gHTegDaAhHQJRAS5avA451fZQoaAZHQGzqO09hZyNoB02YAWgIR0CUQIo73fygdX2UKGgGR0BuVDSLIgeSaAdNJgFoCEdAlEDQgxJumHV9lChoBkdAceI5iExqPGgHTSIBaAhHQJRA37O3UhF1fZQoaAZHQHEU44EOiFloB0v3aAhHQJRB/+qBErp1fZQoaAZHQHOZltGd7OVoB0vcaAhHQJRDPQ0GeMB1fZQoaAZHQHGS/tx+8XhoB0vXaAhHQJRDzZQHiWF1fZQoaAZHQHH0NfkWAPNoB0vwaAhHQJRD0r1/UfB1fZQoaAZHQHKQtB8hLXdoB0v7aAhHQJRD80pEx7B1fZQoaAZHQHC8TR+jM3ZoB00PAmgIR0CURAreqJdjdX2UKGgGR0BtRGl9BrvcaAdL/WgIR0CURCH4XXRPdX2UKGgGR0BxjDLowEhaaAdNHgFoCEdAlESVLJ0W/XV9lChoBkdAcI2Lg4wRG2gHS9toCEdAlES1V5rxiHV9lChoBkdANO2YjSofjmgHS8ZoCEdAlEWV3Qla83V9lChoBkdAcda37DVH4GgHS9loCEdAlEZVoHs1K3V9lChoBkdAcCqagVXV9WgHS/9oCEdAlEZVRpDeCXV9lChoBkdAcbOxdIGyHGgHS/poCEdAlEeLwrlNlHV9lChoBkdAcVeCqp97W2gHS+BoCEdAlEg7bUPQOXV9lChoBkdAcU+szVMEimgHTT4BaAhHQJRIfgAIY3x1fZQoaAZHQHPe6K+BYmtoB0v+aAhHQJRKomKIi1R1fZQoaAZHQHAgea8YhuBoB00DAWgIR0CUS/ntfG+9dX2UKGgGR0BwSRUMoc7yaAdNEQFoCEdAlEw87uDzy3V9lChoBkdAcDQqPfbblGgHS/xoCEdAlEzLZ39rGnV9lChoBkdAcTKEiMYMv2gHTRsBaAhHQJRNFvvSc9Z1fZQoaAZHQHEOJsbedkJoB00ZAWgIR0CUTbYhdMTOdX2UKGgGR0Bw/TjzZpSKaAdNCwFoCEdAlE64tDlYEHV9lChoBkdAcbOIT4+KTGgHS/NoCEdAlE7WLgn+h3V9lChoBkdAcdEq+ajN6mgHS/ZoCEdAlFE//aQFLXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7c097ab09630>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c097ab096c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c097ab09750>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c097ab097e0>", "_build": "<function ActorCriticPolicy._build at 0x7c097ab09870>", "forward": "<function ActorCriticPolicy.forward at 0x7c097ab09900>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7c097ab09990>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c097ab09a20>", "_predict": "<function ActorCriticPolicy._predict at 0x7c097ab09ab0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c097ab09b40>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c097ab09bd0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7c097ab09c60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c097aab3f80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1706367392643528505, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADP3r7tSyfi7qcowPIJAIj0ZYFu9UMQDPgAAgD8AAIA/mnMtPaT2ZzzKkuW9mUeQvtvowbtW7Kw9AAAAAAAAAAAQe1e+5cGxPv2sQj7HQlW+0nIYvWyeBj0AAAAAAAAAAE0/aT3scdM4d6GLvYm7CDmGO9E6JYOBuAAAgD8AAIA/mmWvPbSnhryyeiM7lj2AvTzHNj0ta2w+AACAPwAAgD/mm1c9ttdbPd+5I729RgC+lrjTvE1s9bwAAAAAAAAAAD2/aL4bAIw/dgnDvjpP7L4Xa76+I/sAvQAAAAAAAAAA7Ts5PpyKMT/xNxS+5YGBvmHISz1CGTO+AAAAAAAAAADalps9zchFP6M6/T2E2bG+QKYuPTJRSjwAAAAAAAAAAOAJGj7D5BS84IkXPUrVbbvig3K931xGvAAAgD8AAIA/zaC+u1fqqD6GPwI+kOxpvqZXYT0CUhc8AAAAAAAAAABQmMA+k3cXP9Yzg73HWaC+dcJMPd4JBb0AAAAAAAAAAM0c/rqFe44/M5UGvTMizb5ceJm7GhC4vAAAAAAAAAAA2qchvq9rUD+45ru7dLysvmQWV75tgdA9AAAAAAAAAAAAxyU+BCLiPsoGGL5rgKK+8ZIuPJw4oDwAAAAAAAAAAAZBD77i2Yc/JsPgvg3pB78ghRO+d6tJvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHADwN9YwIuMAWyUTQkBjAF0lEdAkrSXd0q6OHV9lChoBkdAcCxDyvs7dWgHTUYBaAhHQJK072IwdsB1fZQoaAZHQEAUEt/WlM1oB0vRaAhHQJK1OO0b9611fZQoaAZHQHJlU9U0eltoB00BAWgIR0CStLNG3F1kdX2UKGgGR0Bu6wsTWXkYaAdNHgFoCEdAkrecLfDUE3V9lChoBkdAcIMxyn1nNGgHTSYBaAhHQJK36udPLxJ1fZQoaAZHQEsrLLZBcA1oB0vhaAhHQJK39nXd0q91fZQoaAZHQHBrjQZ4wAVoB01CAWgIR0CSuYOx0MgEdX2UKGgGR0BxY/7zkIX1aAdNGgFoCEdAkrizisGPgnV9lChoBkdAcJsIO6NEPWgHTSEBaAhHQJK51HSWqtJ1fZQoaAZHQHEqdJe3QUpoB00kAWgIR0CSuup3X7LudX2UKGgGR0Bx8tX7tRekaAdNHQFoCEdAkr09ZzPrwHV9lChoBkdAaDGUmlZX+2gHTYgCaAhHQJK9XxkNF0B1fZQoaAZHQG1kdGI9C/poB00ZAWgIR0CSvh/ag261dX2UKGgGR0BwZJ4FA3UAaAdNLAFoCEdAkr3iBK+SKXV9lChoBkdAbN8jKPn0TWgHTQ4BaAhHQJK/S4jKPn11fZQoaAZHQHCSAKF7D2toB00rAWgIR0CSwBZaV2RrdX2UKGgGR0BxEuRq46OpaAdNSAFoCEdAksDUZ75VO3V9lChoBkdAcP9Hs1KoRGgHTSsBaAhHQJK/+9XcQAd1fZQoaAZHQHFdyXpnpStoB00WAWgIR0CSwjR+SbH7dX2UKGgGR0ByV3X/YJ3QaAdNKAFoCEdAksNIC6pYLnV9lChoBkdAbkNP5YYBNmgHS/RoCEdAksRPw7T2FnV9lChoBkdAcNrKXOW0JGgHTSoBaAhHQJLDbBnBciZ1fZQoaAZHQHFgcPBi1AtoB00UAWgIR0CSxHLEUCaJdX2UKGgGR0BswHvlU6xPaAdNGQFoCEdAksOAeii7CnV9lChoBkdAcAQXLNfPX2gHTSgBaAhHQJLE09eQdS51fZQoaAZHQHLwpRTCLuRoB00RAWgIR0CSx6n6l+EzdX2UKGgGR0BxxKRPoFFEaAdNGwFoCEdAksgtSIgvDnV9lChoBkdAbqcXkYGdJGgHS/5oCEdAksek9yLhrHV9lChoBkdAboDi83++/WgHTSMBaAhHQJLJSxW1c+t1fZQoaAZHQHABYYNy5qdoB00bAWgIR0CSyi96C17ZdX2UKGgGR0A3NHxz7uUmaAdL0mgIR0CSykguRLbpdX2UKGgGR0BwUjWlMyrQaAdNAwFoCEdAksq87lq8DnV9lChoBkdAY6KJRfnfVWgHTRUDaAhHQJLLAMMI/qx1fZQoaAZHQHIfeWnjyWloB00nAWgIR0CSy1hR64UfdX2UKGgGR0BvU5hz/6wdaAdNIgFoCEdAksraHKwIMXV9lChoBkdAcUgSIxgy/WgHS/ZoCEdAks1pfYzzmXV9lChoBkdAbMKmTkhib2gHTTABaAhHQJLOxZdOZb91fZQoaAZHQHHdqBVdX1doB00jAWgIR0CSzqFev6j4dX2UKGgGR0BvvL08NhE0aAdNJwFoCEdAks66nJkoW3V9lChoBkdAa7fMvh60IGgHTSUBaAhHQJLQPJdSl311fZQoaAZHQHFxnxvvSc9oB01RAWgIR0CS0ZupjtojdX2UKGgGR0BzCjxSYPXkaAdNBwFoCEdAktLsKTjebnV9lChoBkdAbt3uYx+KCWgHTUQBaAhHQJLnCrT6SDB1fZQoaAZHQHKupQDV6NVoB00bAWgIR0CS5xRvFWGRdX2UKGgGR0BwDHiNsFdLaAdNDgFoCEdAkueKij+Jg3V9lChoBkdAbuj/io86m2gHTQEBaAhHQJLnyPDHfdh1fZQoaAZHQHD8qV+qioNoB00bAWgIR0CS6HEnssxxdX2UKGgGR0Bwt5i/fwZwaAdNLgFoCEdAkuiP/3nIQ3V9lChoBkdAb7e2WpqASWgHTRkBaAhHQJLo5plBhQZ1fZQoaAZHQHNXJs0pEx9oB00UAWgIR0CS6EzSThYOdX2UKGgGR0BtiL0pVjqfaAdNeAFoCEdAkuiU4WDYiHV9lChoBkdAbpcpyZKFqWgHS/poCEdAkuuqAOJ+D3V9lChoBkdAckbm9g4OtmgHTTYBaAhHQJLrt+9alk91fZQoaAZHQHCv8rEtNBZoB00TAWgIR0CS6yt5D7ZWdX2UKGgGR0BywPD8+A3DaAdNLAFoCEdAkuvhbOeJ53V9lChoBkdAcPVlIEr5I2gHTQ8BaAhHQJLtRlFtsN51fZQoaAZHQHEad1dPci5oB01cAWgIR0CS7d0KZ2IPdX2UKGgGR0Bw1TBMzuWsaAdL/GgIR0CS7xf642CNdX2UKGgGR0BvoM+1SflIaAdL+2gIR0CS7xiJO32FdX2UKGgGR0ByH62jO9nLaAdNRgFoCEdAku/gXdj5K3V9lChoBkdAcu5cuanaWWgHTRsBaAhHQJLwhCMPz4F1fZQoaAZHQG4NvvKEFntoB00JAWgIR0CS8OYEW69TdX2UKGgGR0By+/xJ/XoUaAdNEgFoCEdAkvET+m3vyHV9lChoBkdAbvNsoDxLCmgHTRkBaAhHQJLxIkD6nBN1fZQoaAZHQG9JqMWGh25oB01IAWgIR0CS8iBYFJQMdX2UKGgGR0ByzAu9OARTaAdNJwFoCEdAkvHRPCVKPHV9lChoBkdAcNLIzWPLgWgHTQYBaAhHQJLz7VQQ+U11fZQoaAZHQHFWgM2FWXFoB00PAWgIR0CS87SgXdj5dX2UKGgGR0Bx0+GFi8WcaAdNIwFoCEdAkvTb2Dg62nV9lChoBkdAcjl44p+c6WgHTYsBaAhHQJL1Tk5p8F91fZQoaAZHQHFyQTEit7toB00fAWgIR0CS9kvzvqkedX2UKGgGR0Bvmczwc5sCaAdNNwFoCEdAkvWxgVoHs3V9lChoBkdAcLZuuzQeFWgHTSIBaAhHQJL2/UTcqON1fZQoaAZHQHGA4P9UCJZoB00dAWgIR0CS+CZwXIludX2UKGgGR0BszKhg3LmqaAdNBQFoCEdAkvg3ogV45nV9lChoBkdAcaLYgJTl1mgHTSEBaAhHQJL57w+dK/V1fZQoaAZHQG5RivPkaMtoB00cAWgIR0CS+ip8neBQdX2UKGgGR0BzZPgccU/OaAdL+2gIR0CS+XDjzZpSdX2UKGgGR0Bt7dCLMs6JaAdNbwFoCEdAkvsEQXhwVHV9lChoBkdAcPKcIqsls2gHTRgBaAhHQJL7VpUPxx11fZQoaAZHQHMRXFglWwNoB01VAWgIR0CS/Cg6ltTDdX2UKGgGR0ByBuaLGaQWaAdNPgFoCEdAkvxf73wkPnV9lChoBkdAbz86e5Fw1mgHTQYBaAhHQJL8b7qIJqt1fZQoaAZHQG/jDlgc94hoB00RAWgIR0CS/tcmShaldX2UKGgGR0Bxa5gDzRQaaAdNVQFoCEdAkv/4ao/A03V9lChoBkdAcl72AoXsPmgHTRwBaAhHQJMAufra/RF1fZQoaAZHQHHWPjS5RTFoB01cAWgIR0CTAZS9du50dX2UKGgGR0BukR/XoTwlaAdNHwFoCEdAkwHnw9aEBnV9lChoBkdAcMLAj6eoUGgHTQQBaAhHQJMCRWOp84R1fZQoaAZHQG7tjfNzKcNoB00bAWgIR0CTBfGpuMuOdX2UKGgGR0BwcEO09hZyaAdNSwFoCEdAkwX+/Dcdo3V9lChoBkdAbiZWtlqagGgHTRIBaAhHQJMFJ6IFeOZ1fZQoaAZHQG3C/ek56t1oB00fAWgIR0CTBlazu4PPdX2UKGgGR0BxaqbG3nZCaAdNFwFoCEdAkwdIsAeaKHV9lChoBkdAcSFSEDhcaGgHTQUBaAhHQJMHjsv7FbV1fZQoaAZHQG/UnjQzDXRoB02/AWgIR0CTB02zfJmvdX2UKGgGR0Btq/4AS39aaAdNVAFoCEdAkwjrgbZOBXV9lChoBkdAbgFJBgNPQGgHTRcBaAhHQJMIStA9mpV1fZQoaAZHQHBCRgRbr1NoB00dAWgIR0CTCIf+jua4dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:27c7bb4a305bd16b5e545c4937e77668bb893c158b2b438cf0b304482f58dfe3
|
3 |
+
size 148056
|
ppo-LunarLander-v2/data
CHANGED
@@ -4,20 +4,20 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc._abc_data object at
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
@@ -26,12 +26,12 @@
|
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
-
"start_time":
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
-
":serialized:": "
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -45,7 +45,7 @@
|
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
-
":serialized:": "
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7c097ab09630>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c097ab096c0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c097ab09750>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c097ab097e0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7c097ab09870>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7c097ab09900>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7c097ab09990>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c097ab09a20>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7c097ab09ab0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c097ab09b40>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c097ab09bd0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7c097ab09c60>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7c097aab3f80>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
|
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
+
"start_time": 1706367392643528505,
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADP3r7tSyfi7qcowPIJAIj0ZYFu9UMQDPgAAgD8AAIA/mnMtPaT2ZzzKkuW9mUeQvtvowbtW7Kw9AAAAAAAAAAAQe1e+5cGxPv2sQj7HQlW+0nIYvWyeBj0AAAAAAAAAAE0/aT3scdM4d6GLvYm7CDmGO9E6JYOBuAAAgD8AAIA/mmWvPbSnhryyeiM7lj2AvTzHNj0ta2w+AACAPwAAgD/mm1c9ttdbPd+5I729RgC+lrjTvE1s9bwAAAAAAAAAAD2/aL4bAIw/dgnDvjpP7L4Xa76+I/sAvQAAAAAAAAAA7Ts5PpyKMT/xNxS+5YGBvmHISz1CGTO+AAAAAAAAAADalps9zchFP6M6/T2E2bG+QKYuPTJRSjwAAAAAAAAAAOAJGj7D5BS84IkXPUrVbbvig3K931xGvAAAgD8AAIA/zaC+u1fqqD6GPwI+kOxpvqZXYT0CUhc8AAAAAAAAAABQmMA+k3cXP9Yzg73HWaC+dcJMPd4JBb0AAAAAAAAAAM0c/rqFe44/M5UGvTMizb5ceJm7GhC4vAAAAAAAAAAA2qchvq9rUD+45ru7dLysvmQWV75tgdA9AAAAAAAAAAAAxyU+BCLiPsoGGL5rgKK+8ZIuPJw4oDwAAAAAAAAAAAZBD77i2Yc/JsPgvg3pB78ghRO+d6tJvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVOgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHADwN9YwIuMAWyUTQkBjAF0lEdAkrSXd0q6OHV9lChoBkdAcCxDyvs7dWgHTUYBaAhHQJK072IwdsB1fZQoaAZHQEAUEt/WlM1oB0vRaAhHQJK1OO0b9611fZQoaAZHQHJlU9U0eltoB00BAWgIR0CStLNG3F1kdX2UKGgGR0Bu6wsTWXkYaAdNHgFoCEdAkrecLfDUE3V9lChoBkdAcIMxyn1nNGgHTSYBaAhHQJK36udPLxJ1fZQoaAZHQEsrLLZBcA1oB0vhaAhHQJK39nXd0q91fZQoaAZHQHBrjQZ4wAVoB01CAWgIR0CSuYOx0MgEdX2UKGgGR0BxY/7zkIX1aAdNGgFoCEdAkrizisGPgnV9lChoBkdAcJsIO6NEPWgHTSEBaAhHQJK51HSWqtJ1fZQoaAZHQHEqdJe3QUpoB00kAWgIR0CSuup3X7LudX2UKGgGR0Bx8tX7tRekaAdNHQFoCEdAkr09ZzPrwHV9lChoBkdAaDGUmlZX+2gHTYgCaAhHQJK9XxkNF0B1fZQoaAZHQG1kdGI9C/poB00ZAWgIR0CSvh/ag261dX2UKGgGR0BwZJ4FA3UAaAdNLAFoCEdAkr3iBK+SKXV9lChoBkdAbN8jKPn0TWgHTQ4BaAhHQJK/S4jKPn11fZQoaAZHQHCSAKF7D2toB00rAWgIR0CSwBZaV2RrdX2UKGgGR0BxEuRq46OpaAdNSAFoCEdAksDUZ75VO3V9lChoBkdAcP9Hs1KoRGgHTSsBaAhHQJK/+9XcQAd1fZQoaAZHQHFdyXpnpStoB00WAWgIR0CSwjR+SbH7dX2UKGgGR0ByV3X/YJ3QaAdNKAFoCEdAksNIC6pYLnV9lChoBkdAbkNP5YYBNmgHS/RoCEdAksRPw7T2FnV9lChoBkdAcNrKXOW0JGgHTSoBaAhHQJLDbBnBciZ1fZQoaAZHQHFgcPBi1AtoB00UAWgIR0CSxHLEUCaJdX2UKGgGR0BswHvlU6xPaAdNGQFoCEdAksOAeii7CnV9lChoBkdAcAQXLNfPX2gHTSgBaAhHQJLE09eQdS51fZQoaAZHQHLwpRTCLuRoB00RAWgIR0CSx6n6l+EzdX2UKGgGR0BxxKRPoFFEaAdNGwFoCEdAksgtSIgvDnV9lChoBkdAbqcXkYGdJGgHS/5oCEdAksek9yLhrHV9lChoBkdAboDi83++/WgHTSMBaAhHQJLJSxW1c+t1fZQoaAZHQHABYYNy5qdoB00bAWgIR0CSyi96C17ZdX2UKGgGR0A3NHxz7uUmaAdL0mgIR0CSykguRLbpdX2UKGgGR0BwUjWlMyrQaAdNAwFoCEdAksq87lq8DnV9lChoBkdAY6KJRfnfVWgHTRUDaAhHQJLLAMMI/qx1fZQoaAZHQHIfeWnjyWloB00nAWgIR0CSy1hR64UfdX2UKGgGR0BvU5hz/6wdaAdNIgFoCEdAksraHKwIMXV9lChoBkdAcUgSIxgy/WgHS/ZoCEdAks1pfYzzmXV9lChoBkdAbMKmTkhib2gHTTABaAhHQJLOxZdOZb91fZQoaAZHQHHdqBVdX1doB00jAWgIR0CSzqFev6j4dX2UKGgGR0BvvL08NhE0aAdNJwFoCEdAks66nJkoW3V9lChoBkdAa7fMvh60IGgHTSUBaAhHQJLQPJdSl311fZQoaAZHQHFxnxvvSc9oB01RAWgIR0CS0ZupjtojdX2UKGgGR0BzCjxSYPXkaAdNBwFoCEdAktLsKTjebnV9lChoBkdAbt3uYx+KCWgHTUQBaAhHQJLnCrT6SDB1fZQoaAZHQHKupQDV6NVoB00bAWgIR0CS5xRvFWGRdX2UKGgGR0BwDHiNsFdLaAdNDgFoCEdAkueKij+Jg3V9lChoBkdAbuj/io86m2gHTQEBaAhHQJLnyPDHfdh1fZQoaAZHQHD8qV+qioNoB00bAWgIR0CS6HEnssxxdX2UKGgGR0Bwt5i/fwZwaAdNLgFoCEdAkuiP/3nIQ3V9lChoBkdAb7e2WpqASWgHTRkBaAhHQJLo5plBhQZ1fZQoaAZHQHNXJs0pEx9oB00UAWgIR0CS6EzSThYOdX2UKGgGR0BtiL0pVjqfaAdNeAFoCEdAkuiU4WDYiHV9lChoBkdAbpcpyZKFqWgHS/poCEdAkuuqAOJ+D3V9lChoBkdAckbm9g4OtmgHTTYBaAhHQJLrt+9alk91fZQoaAZHQHCv8rEtNBZoB00TAWgIR0CS6yt5D7ZWdX2UKGgGR0BywPD8+A3DaAdNLAFoCEdAkuvhbOeJ53V9lChoBkdAcPVlIEr5I2gHTQ8BaAhHQJLtRlFtsN51fZQoaAZHQHEad1dPci5oB01cAWgIR0CS7d0KZ2IPdX2UKGgGR0Bw1TBMzuWsaAdL/GgIR0CS7xf642CNdX2UKGgGR0BvoM+1SflIaAdL+2gIR0CS7xiJO32FdX2UKGgGR0ByH62jO9nLaAdNRgFoCEdAku/gXdj5K3V9lChoBkdAcu5cuanaWWgHTRsBaAhHQJLwhCMPz4F1fZQoaAZHQG4NvvKEFntoB00JAWgIR0CS8OYEW69TdX2UKGgGR0By+/xJ/XoUaAdNEgFoCEdAkvET+m3vyHV9lChoBkdAbvNsoDxLCmgHTRkBaAhHQJLxIkD6nBN1fZQoaAZHQG9JqMWGh25oB01IAWgIR0CS8iBYFJQMdX2UKGgGR0ByzAu9OARTaAdNJwFoCEdAkvHRPCVKPHV9lChoBkdAcNLIzWPLgWgHTQYBaAhHQJLz7VQQ+U11fZQoaAZHQHFWgM2FWXFoB00PAWgIR0CS87SgXdj5dX2UKGgGR0Bx0+GFi8WcaAdNIwFoCEdAkvTb2Dg62nV9lChoBkdAcjl44p+c6WgHTYsBaAhHQJL1Tk5p8F91fZQoaAZHQHFyQTEit7toB00fAWgIR0CS9kvzvqkedX2UKGgGR0Bvmczwc5sCaAdNNwFoCEdAkvWxgVoHs3V9lChoBkdAcLZuuzQeFWgHTSIBaAhHQJL2/UTcqON1fZQoaAZHQHGA4P9UCJZoB00dAWgIR0CS+CZwXIludX2UKGgGR0BszKhg3LmqaAdNBQFoCEdAkvg3ogV45nV9lChoBkdAcaLYgJTl1mgHTSEBaAhHQJL57w+dK/V1fZQoaAZHQG5RivPkaMtoB00cAWgIR0CS+ip8neBQdX2UKGgGR0BzZPgccU/OaAdL+2gIR0CS+XDjzZpSdX2UKGgGR0Bt7dCLMs6JaAdNbwFoCEdAkvsEQXhwVHV9lChoBkdAcPKcIqsls2gHTRgBaAhHQJL7VpUPxx11fZQoaAZHQHMRXFglWwNoB01VAWgIR0CS/Cg6ltTDdX2UKGgGR0ByBuaLGaQWaAdNPgFoCEdAkvxf73wkPnV9lChoBkdAbz86e5Fw1mgHTQYBaAhHQJL8b7qIJqt1fZQoaAZHQG/jDlgc94hoB00RAWgIR0CS/tcmShaldX2UKGgGR0Bxa5gDzRQaaAdNVQFoCEdAkv/4ao/A03V9lChoBkdAcl72AoXsPmgHTRwBaAhHQJMAufra/RF1fZQoaAZHQHHWPjS5RTFoB01cAWgIR0CTAZS9du50dX2UKGgGR0BukR/XoTwlaAdNHwFoCEdAkwHnw9aEBnV9lChoBkdAcMLAj6eoUGgHTQQBaAhHQJMCRWOp84R1fZQoaAZHQG7tjfNzKcNoB00bAWgIR0CTBfGpuMuOdX2UKGgGR0BwcEO09hZyaAdNSwFoCEdAkwX+/Dcdo3V9lChoBkdAbiZWtlqagGgHTRIBaAhHQJMFJ6IFeOZ1fZQoaAZHQG3C/ek56t1oB00fAWgIR0CTBlazu4PPdX2UKGgGR0BxaqbG3nZCaAdNFwFoCEdAkwdIsAeaKHV9lChoBkdAcSFSEDhcaGgHTQUBaAhHQJMHjsv7FbV1fZQoaAZHQG/UnjQzDXRoB02/AWgIR0CTB02zfJmvdX2UKGgGR0Btq/4AS39aaAdNVAFoCEdAkwjrgbZOBXV9lChoBkdAbgFJBgNPQGgHTRcBaAhHQJMIStA9mpV1fZQoaAZHQHBCRgRbr1NoB00dAWgIR0CTCIf+jua4dWUu"
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 88362
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:26ea64b39c87d27142aeaf00a599e4286c6d50a40247bb9c23369af93b7f6fdf
|
3 |
size 88362
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43762
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bf7053f6a7d5945e9added0af4bbe1e80ef27ad9a9e542d85df0ae77ef5e2562
|
3 |
size 43762
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 263.9945127357423, "std_reward": 17.579079480657605, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-01-27T15:31:31.016789"}
|