|
|
|
import paddle |
|
import argparse |
|
import cv2 |
|
import numpy as np |
|
import os |
|
from models.model import FaceSwap, l2_norm |
|
from models.arcface import IRBlock, ResNet |
|
from utils.align_face import back_matrix, dealign, align_img |
|
from utils.util import paddle2cv, cv2paddle |
|
from utils.prepare_data import LandmarkModel |
|
from tqdm import tqdm |
|
|
|
def get_id_emb(id_net, id_img): |
|
id_img = cv2.resize(id_img, (112, 112)) |
|
id_img = cv2paddle(id_img) |
|
mean = paddle.to_tensor([[0.485, 0.456, 0.406]]).reshape((1, 3, 1, 1)) |
|
std = paddle.to_tensor([[0.229, 0.224, 0.225]]).reshape((1, 3, 1, 1)) |
|
id_img = (id_img - mean) / std |
|
|
|
id_emb, id_feature = id_net(id_img) |
|
id_emb = l2_norm(id_emb) |
|
|
|
return id_emb, id_feature |
|
|
|
|
|
def video_test(args): |
|
|
|
paddle.set_device("gpu" if args.use_gpu else 'cpu') |
|
faceswap_model = FaceSwap(args.use_gpu) |
|
|
|
id_net = ResNet(block=IRBlock, layers=[3, 4, 23, 3]) |
|
id_net.set_dict(paddle.load('./checkpoints/arcface.pdparams')) |
|
|
|
id_net.eval() |
|
|
|
weight = paddle.load('./checkpoints/MobileFaceSwap_224.pdparams') |
|
|
|
landmarkModel = LandmarkModel(name='landmarks') |
|
landmarkModel.prepare(ctx_id= 0, det_thresh=0.6, det_size=(640,640)) |
|
id_img = cv2.imread(args.source_img_path) |
|
|
|
landmark = landmarkModel.get(id_img) |
|
if landmark is None: |
|
print('**** No Face Detect Error ****') |
|
exit() |
|
aligned_id_img, _ = align_img(id_img, landmark) |
|
|
|
id_emb, id_feature = get_id_emb(id_net, aligned_id_img) |
|
|
|
faceswap_model.set_model_param(id_emb, id_feature, model_weight=weight) |
|
faceswap_model.eval() |
|
|
|
fourcc = cv2.VideoWriter_fourcc(*'mp4v') |
|
cap = cv2.VideoCapture() |
|
cap.open(args.target_video_path) |
|
videoWriter = cv2.VideoWriter(os.path.join(args.output_path, os.path.basename(args.target_video_path)), fourcc, int(cap.get(cv2.CAP_PROP_FPS)), (int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)),int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)))) |
|
all_f = cap.get(cv2.CAP_PROP_FRAME_COUNT) |
|
for i in tqdm(range(int(all_f))): |
|
ret, frame = cap.read() |
|
landmark = landmarkModel.get(frame) |
|
if landmark is not None: |
|
att_img, back_matrix = align_img(frame, landmark) |
|
att_img = cv2paddle(att_img) |
|
res, mask = faceswap_model(att_img) |
|
res = paddle2cv(res) |
|
mask = np.transpose(mask[0].numpy(), (1, 2, 0)) |
|
res = dealign(res, frame, back_matrix, mask) |
|
frame = res |
|
else: |
|
print('**** No Face Detect Error ****') |
|
videoWriter.write(frame) |
|
cap.release() |
|
videoWriter.release() |
|
|
|
|
|
if __name__ == '__main__': |
|
|
|
parser = argparse.ArgumentParser(description="MobileFaceSwap Test") |
|
|
|
parser = argparse.ArgumentParser(description="MobileFaceSwap Test") |
|
parser.add_argument('--source_img_path', type=str, help='path to the source image') |
|
parser.add_argument('--target_video_path', type=str, help='path to the target video') |
|
parser.add_argument('--output_path', type=str, default='results', help='path to the output videos') |
|
parser.add_argument('--image_size', type=int, default=224,help='size of the test images (224 SimSwap | 256 FaceShifter)') |
|
parser.add_argument('--merge_result', type=bool, default=True, help='output with whole image') |
|
parser.add_argument('--use_gpu', type=bool, default=False) |
|
|
|
args = parser.parse_args() |
|
video_test(args) |