Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
|
@@ -10,6 +10,7 @@ tags:
|
|
| 10 |
- problem-solving
|
| 11 |
- unsloth
|
| 12 |
- lora
|
|
|
|
| 13 |
license: apache-2.0
|
| 14 |
datasets:
|
| 15 |
- openai/gsm8k
|
|
@@ -61,9 +62,57 @@ You are an advanced reasoning assistant that excels at solving complex problems.
|
|
| 61 |
5. Verify your conclusions with examples or counterexamples
|
| 62 |
```
|
| 63 |
|
| 64 |
-
## Usage with
|
| 65 |
|
| 66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
|
| 68 |
```python
|
| 69 |
# Import unsloth first
|
|
@@ -88,38 +137,3 @@ tokenizer = get_chat_template(tokenizer, chat_template="llama-3.1")
|
|
| 88 |
# Prepare for inference
|
| 89 |
FastLanguageModel.for_inference(model)
|
| 90 |
```
|
| 91 |
-
|
| 92 |
-
## Example Usage
|
| 93 |
-
|
| 94 |
-
```python
|
| 95 |
-
# Create messages with system prompt
|
| 96 |
-
messages = [
|
| 97 |
-
{"role": "system", "content": "You are an advanced reasoning assistant that excels at solving complex problems."},
|
| 98 |
-
{"role": "user", "content": "If a train travels at 60 miles per hour, how far will it travel in 2.5 hours?"}
|
| 99 |
-
]
|
| 100 |
-
|
| 101 |
-
# Apply chat template
|
| 102 |
-
inputs = tokenizer.apply_chat_template(
|
| 103 |
-
messages,
|
| 104 |
-
tokenize=True,
|
| 105 |
-
add_generation_prompt=True,
|
| 106 |
-
return_tensors="pt"
|
| 107 |
-
).to(model.device)
|
| 108 |
-
|
| 109 |
-
# Generate response
|
| 110 |
-
with torch.no_grad():
|
| 111 |
-
outputs = model.generate(
|
| 112 |
-
inputs,
|
| 113 |
-
max_new_tokens=300,
|
| 114 |
-
temperature=0.2,
|
| 115 |
-
top_p=0.92,
|
| 116 |
-
repetition_penalty=1.05,
|
| 117 |
-
do_sample=True,
|
| 118 |
-
pad_token_id=tokenizer.pad_token_id,
|
| 119 |
-
eos_token_id=tokenizer.eos_token_id,
|
| 120 |
-
)
|
| 121 |
-
|
| 122 |
-
# Decode response
|
| 123 |
-
response = tokenizer.decode(outputs[0][inputs.shape[1]:], skip_special_tokens=True)
|
| 124 |
-
print(response)
|
| 125 |
-
```
|
|
|
|
| 10 |
- problem-solving
|
| 11 |
- unsloth
|
| 12 |
- lora
|
| 13 |
+
library_name: transformers
|
| 14 |
license: apache-2.0
|
| 15 |
datasets:
|
| 16 |
- openai/gsm8k
|
|
|
|
| 62 |
5. Verify your conclusions with examples or counterexamples
|
| 63 |
```
|
| 64 |
|
| 65 |
+
## Usage with Transformers
|
| 66 |
|
| 67 |
+
The model can be loaded using standard Transformers library:
|
| 68 |
+
|
| 69 |
+
```python
|
| 70 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 71 |
+
|
| 72 |
+
model_name = "vexoolabs/Vexoo-TrailBlazer-1B"
|
| 73 |
+
|
| 74 |
+
# Load tokenizer and model
|
| 75 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 76 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 77 |
+
model_name,
|
| 78 |
+
torch_dtype="auto",
|
| 79 |
+
device_map="auto"
|
| 80 |
+
)
|
| 81 |
+
|
| 82 |
+
# System prompt for reasoning
|
| 83 |
+
system_prompt = "You are an advanced reasoning assistant that excels at solving complex problems."
|
| 84 |
+
user_question = "If a train travels at 60 miles per hour, how far will it travel in 2.5 hours?"
|
| 85 |
+
|
| 86 |
+
# Format with system prompt
|
| 87 |
+
messages = [
|
| 88 |
+
{"role": "system", "content": system_prompt},
|
| 89 |
+
{"role": "user", "content": user_question}
|
| 90 |
+
]
|
| 91 |
+
|
| 92 |
+
# Format prompt
|
| 93 |
+
inputs = tokenizer.apply_chat_template(
|
| 94 |
+
messages,
|
| 95 |
+
return_tensors="pt",
|
| 96 |
+
add_generation_prompt=True
|
| 97 |
+
).to(model.device)
|
| 98 |
+
|
| 99 |
+
# Generate
|
| 100 |
+
outputs = model.generate(
|
| 101 |
+
inputs,
|
| 102 |
+
max_new_tokens=300,
|
| 103 |
+
temperature=0.2,
|
| 104 |
+
top_p=0.92,
|
| 105 |
+
repetition_penalty=1.05,
|
| 106 |
+
do_sample=True
|
| 107 |
+
)
|
| 108 |
+
|
| 109 |
+
response = tokenizer.decode(outputs[0][inputs.shape[1]:], skip_special_tokens=True)
|
| 110 |
+
print(response)
|
| 111 |
+
```
|
| 112 |
+
|
| 113 |
+
## Advanced Usage with Unsloth
|
| 114 |
+
|
| 115 |
+
For optimal performance, you can also load with Unsloth:
|
| 116 |
|
| 117 |
```python
|
| 118 |
# Import unsloth first
|
|
|
|
| 137 |
# Prepare for inference
|
| 138 |
FastLanguageModel.for_inference(model)
|
| 139 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|