--- base_model: google/gemma-2b library_name: peft license: apache-2.0 datasets: - Rahulholla/stock-analysis language: - en pipeline_tag: question-answering tags: - finance --- # Model Card for Model ID A Gemma-2b finetuned LoRA trained on science Q&A - **Developed by:** Venkat ## How to Get Started with the Model ``` import torch from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig from peft import PeftModel from typing import Optional import time import os def generate_prompt(input_text: str, instruction: Optional[str] = None) -> str: text = f"### Question: {input_text}\n\n### Answer: " if instruction: text = f"### Instruction: {instruction}\n\n{text}" return text huggingface_token = os.environ.get('HUGGINGFACE_TOKEN') base_model = AutoModelForCausalLM.from_pretrained("google/gemma-2b", token=huggingface_token) tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b", token=huggingface_token) lora_model = PeftModel.from_pretrained(base_model, "vdpappu/lora_stock_analysis") merged_model = lora_model.merge_and_unload() eos_token = '' eos_token_id = tokenizer.encode(eos_token, add_special_tokens=False)[-1] generation_config = GenerationConfig( eos_token_id=tokenizer.eos_token_id, min_length=5, max_length=200, do_sample=True, temperature=0.7, top_p=0.9, top_k=50, repetition_penalty=1.5, no_repeat_ngram_size=3, early_stopping=True ) question = """Assume the role as a seasoned stock option analyst with a strong track record in dissecting intricate option data to discern valuable insights into stock sentiment. Proficient in utilizing advanced statistical models and data visualization techniques to forecast market trends and make informed trading decisions. Adept at interpreting option Greeks, implied volatility, .. """ prompt = generate_prompt(input_text=question) with torch.no_grad(): inputs = tokenizer(prompt, return_tensors="pt") output = merged_model.generate(**inputs, generation_config=generation_config) response = tokenizer.decode(output[0], skip_special_tokens=True) print(response) ``` - PEFT 0.12.0