File size: 9,723 Bytes
162639f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
---
license: other
base_model: nvidia/mit-b5
tags:
- generated_from_trainer
model-index:
- name: segcrack9k_conglomerate_segformer
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# segcrack9k_conglomerate_segformer

This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0857
- Mean Iou: 0.0010
- Mean Accuracy: 0.0021
- Overall Accuracy: 0.0021
- Accuracy Background: nan
- Accuracy Crack: 0.0021
- Iou Background: 0.0
- Iou Crack: 0.0021

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 8e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1

### Training results

| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Crack | Iou Background | Iou Crack |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:--------------:|:--------------:|:---------:|
| 0.0716        | 0.02  | 100  | 0.1132          | 0.0      | 0.0           | 0.0              | nan                 | 0.0            | 0.0            | 0.0       |
| 0.0708        | 0.04  | 200  | 0.1006          | 0.0001   | 0.0003        | 0.0003           | nan                 | 0.0003         | 0.0            | 0.0003    |
| 0.1661        | 0.06  | 300  | 0.1042          | 0.0      | 0.0           | 0.0              | nan                 | 0.0            | 0.0            | 0.0       |
| 0.0601        | 0.08  | 400  | 0.1005          | 0.0      | 0.0           | 0.0              | nan                 | 0.0            | 0.0            | 0.0       |
| 0.1034        | 0.1   | 500  | 0.0980          | 0.0237   | 0.0474        | 0.0474           | nan                 | 0.0474         | 0.0            | 0.0474    |
| 0.0581        | 0.12  | 600  | 0.0965          | 0.0003   | 0.0005        | 0.0005           | nan                 | 0.0005         | 0.0            | 0.0005    |
| 0.0561        | 0.14  | 700  | 0.1023          | 0.0038   | 0.0075        | 0.0075           | nan                 | 0.0075         | 0.0            | 0.0075    |
| 0.1034        | 0.16  | 800  | 0.0956          | 0.0002   | 0.0003        | 0.0003           | nan                 | 0.0003         | 0.0            | 0.0003    |
| 0.1341        | 0.18  | 900  | 0.0985          | 0.0185   | 0.0369        | 0.0369           | nan                 | 0.0369         | 0.0            | 0.0369    |
| 0.1988        | 0.2   | 1000 | 0.0946          | 0.0059   | 0.0118        | 0.0118           | nan                 | 0.0118         | 0.0            | 0.0118    |
| 0.0378        | 0.22  | 1100 | 0.0945          | 0.1402   | 0.2804        | 0.2804           | nan                 | 0.2804         | 0.0            | 0.2804    |
| 0.0582        | 0.24  | 1200 | 0.0907          | 0.0488   | 0.0976        | 0.0976           | nan                 | 0.0976         | 0.0            | 0.0976    |
| 0.1464        | 0.26  | 1300 | 0.0971          | 0.1701   | 0.3401        | 0.3401           | nan                 | 0.3401         | 0.0            | 0.3401    |
| 0.0601        | 0.28  | 1400 | 0.0893          | 0.0222   | 0.0444        | 0.0444           | nan                 | 0.0444         | 0.0            | 0.0444    |
| 0.0855        | 0.3   | 1500 | 0.0910          | 0.0307   | 0.0613        | 0.0613           | nan                 | 0.0613         | 0.0            | 0.0613    |
| 0.1167        | 0.32  | 1600 | 0.0895          | 0.0143   | 0.0286        | 0.0286           | nan                 | 0.0286         | 0.0            | 0.0286    |
| 0.0641        | 0.34  | 1700 | 0.0918          | 0.0073   | 0.0145        | 0.0145           | nan                 | 0.0145         | 0.0            | 0.0145    |
| 0.0621        | 0.36  | 1800 | 0.0927          | 0.0181   | 0.0363        | 0.0363           | nan                 | 0.0363         | 0.0            | 0.0363    |
| 0.0364        | 0.38  | 1900 | 0.0884          | 0.1397   | 0.2794        | 0.2794           | nan                 | 0.2794         | 0.0            | 0.2794    |
| 0.1394        | 0.4   | 2000 | 0.0903          | 0.0000   | 0.0000        | 0.0000           | nan                 | 0.0000         | 0.0            | 0.0000    |
| 0.0187        | 0.42  | 2100 | 0.0914          | 0.0124   | 0.0248        | 0.0248           | nan                 | 0.0248         | 0.0            | 0.0248    |
| 0.1842        | 0.44  | 2200 | 0.0908          | 0.0045   | 0.0090        | 0.0090           | nan                 | 0.0090         | 0.0            | 0.0090    |
| 0.0847        | 0.46  | 2300 | 0.0896          | 0.0031   | 0.0062        | 0.0062           | nan                 | 0.0062         | 0.0            | 0.0062    |
| 0.0556        | 0.48  | 2400 | 0.0871          | 0.0016   | 0.0033        | 0.0033           | nan                 | 0.0033         | 0.0            | 0.0033    |
| 0.0454        | 0.51  | 2500 | 0.0896          | 0.0005   | 0.0010        | 0.0010           | nan                 | 0.0010         | 0.0            | 0.0010    |
| 0.1411        | 0.53  | 2600 | 0.0876          | 0.0095   | 0.0190        | 0.0190           | nan                 | 0.0190         | 0.0            | 0.0190    |
| 0.1044        | 0.55  | 2700 | 0.0936          | 0.0001   | 0.0002        | 0.0002           | nan                 | 0.0002         | 0.0            | 0.0002    |
| 0.1299        | 0.57  | 2800 | 0.0938          | 0.0008   | 0.0017        | 0.0017           | nan                 | 0.0017         | 0.0            | 0.0017    |
| 0.0909        | 0.59  | 2900 | 0.0877          | 0.0012   | 0.0024        | 0.0024           | nan                 | 0.0024         | 0.0            | 0.0024    |
| 0.0981        | 0.61  | 3000 | 0.0914          | 0.0012   | 0.0024        | 0.0024           | nan                 | 0.0024         | 0.0            | 0.0024    |
| 0.0905        | 0.63  | 3100 | 0.0880          | 0.0077   | 0.0153        | 0.0153           | nan                 | 0.0153         | 0.0            | 0.0153    |
| 0.2111        | 0.65  | 3200 | 0.0877          | 0.0000   | 0.0001        | 0.0001           | nan                 | 0.0001         | 0.0            | 0.0001    |
| 0.3218        | 0.67  | 3300 | 0.0860          | 0.0036   | 0.0072        | 0.0072           | nan                 | 0.0072         | 0.0            | 0.0072    |
| 0.1134        | 0.69  | 3400 | 0.0864          | 0.0075   | 0.0151        | 0.0151           | nan                 | 0.0151         | 0.0            | 0.0151    |
| 0.2184        | 0.71  | 3500 | 0.0907          | 0.0000   | 0.0000        | 0.0000           | nan                 | 0.0000         | 0.0            | 0.0000    |
| 0.1779        | 0.73  | 3600 | 0.0877          | 0.0029   | 0.0059        | 0.0059           | nan                 | 0.0059         | 0.0            | 0.0059    |
| 0.3664        | 0.75  | 3700 | 0.0878          | 0.0001   | 0.0001        | 0.0001           | nan                 | 0.0001         | 0.0            | 0.0001    |
| 0.0365        | 0.77  | 3800 | 0.0870          | 0.0000   | 0.0000        | 0.0000           | nan                 | 0.0000         | 0.0            | 0.0000    |
| 0.0591        | 0.79  | 3900 | 0.0877          | 0.0000   | 0.0001        | 0.0001           | nan                 | 0.0001         | 0.0            | 0.0001    |
| 0.0719        | 0.81  | 4000 | 0.0871          | 0.0004   | 0.0008        | 0.0008           | nan                 | 0.0008         | 0.0            | 0.0008    |
| 0.0402        | 0.83  | 4100 | 0.0874          | 0.0011   | 0.0022        | 0.0022           | nan                 | 0.0022         | 0.0            | 0.0022    |
| 0.0814        | 0.85  | 4200 | 0.0887          | 0.0008   | 0.0017        | 0.0017           | nan                 | 0.0017         | 0.0            | 0.0017    |
| 0.0485        | 0.87  | 4300 | 0.0871          | 0.0025   | 0.0050        | 0.0050           | nan                 | 0.0050         | 0.0            | 0.0050    |
| 0.0487        | 0.89  | 4400 | 0.0864          | 0.0004   | 0.0007        | 0.0007           | nan                 | 0.0007         | 0.0            | 0.0007    |
| 0.0689        | 0.91  | 4500 | 0.0859          | 0.0002   | 0.0004        | 0.0004           | nan                 | 0.0004         | 0.0            | 0.0004    |
| 0.0782        | 0.93  | 4600 | 0.0858          | 0.0018   | 0.0036        | 0.0036           | nan                 | 0.0036         | 0.0            | 0.0036    |
| 0.2153        | 0.95  | 4700 | 0.0855          | 0.0004   | 0.0008        | 0.0008           | nan                 | 0.0008         | 0.0            | 0.0008    |
| 0.1974        | 0.97  | 4800 | 0.0860          | 0.0004   | 0.0009        | 0.0009           | nan                 | 0.0009         | 0.0            | 0.0009    |
| 0.0184        | 0.99  | 4900 | 0.0857          | 0.0010   | 0.0021        | 0.0021           | nan                 | 0.0021         | 0.0            | 0.0021    |


### Framework versions

- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3