Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,49 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
---
|
4 |
+
|
5 |
+
### Generating Questions Given Context and Answers
|
6 |
+
|
7 |
+
Traditional BART model is not pre-trained on QG tasks. We fine-tuned `facebook/bart-large` model using 55k human-created question answering pairs with contexts collected by [Demszky et al. (2018)](https://arxiv.org/abs/1809.02922). The dataset includes SQuAD and QA2D question answering pairs associated with contexts.
|
8 |
+
|
9 |
+
### How to use
|
10 |
+
Here is how to use this model in PyTorch:
|
11 |
+
```python
|
12 |
+
from transformers import BartForConditionalGeneration, BartTokenizer
|
13 |
+
import torch
|
14 |
+
|
15 |
+
tokenizer = BartTokenizer.from_pretrained('uzw/bart-large-question-generation')
|
16 |
+
model = BartForConditionalGeneration.from_pretrained('uzw/bart-large-question-generation')
|
17 |
+
|
18 |
+
context = "The Thug cult resides at the Pankot Palace."
|
19 |
+
answer = "The Thug cult"
|
20 |
+
|
21 |
+
inputs = tokenizer.encode_plus(
|
22 |
+
context,
|
23 |
+
answer,
|
24 |
+
max_length=512,
|
25 |
+
padding='max_length',
|
26 |
+
truncation=True,
|
27 |
+
return_tensors='pt'
|
28 |
+
)
|
29 |
+
|
30 |
+
with torch.no_grad():
|
31 |
+
generated_ids = model.generate(
|
32 |
+
input_ids=inputs['input_ids'],
|
33 |
+
attention_mask=inputs['attention_mask'],
|
34 |
+
max_length=64, # Maximum length of generated question
|
35 |
+
num_return_sequences=3, # Generate multiple questions
|
36 |
+
do_sample=True, # Enable sampling for diversity
|
37 |
+
temperature=0.7 # Control randomness of generation
|
38 |
+
)
|
39 |
+
|
40 |
+
generated_questions = tokenizer.batch_decode(
|
41 |
+
generated_ids,
|
42 |
+
skip_special_tokens=True
|
43 |
+
)
|
44 |
+
|
45 |
+
for i, question in enumerate(generated_questions, 1):
|
46 |
+
print(f"Generated Question {i}: {question}")
|
47 |
+
```
|
48 |
+
|
49 |
+
Adjusting parameter `num_return_sequences` to generate multiple questions.
|