Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-sb3-LunarLander-v2.zip +3 -0
- ppo-sb3-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-sb3-LunarLander-v2/data +96 -0
- ppo-sb3-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-sb3-LunarLander-v2/policy.pth +3 -0
- ppo-sb3-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-sb3-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 269.49 +/- 26.70
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f786c2ac790>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f786c2ac820>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f786c2ac8b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f786c2ac940>", "_build": "<function ActorCriticPolicy._build at 0x7f786c2ac9d0>", "forward": "<function ActorCriticPolicy.forward at 0x7f786c2aca60>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f786c2acaf0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f786c2acb80>", "_predict": "<function ActorCriticPolicy._predict at 0x7f786c2acc10>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f786c2acca0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f786c2acd30>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f786c2acdc0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f786c94e2c0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAAAAAAAAAAAlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVkgAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROjAVzdGFydJRLAHViLg==", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null, "start": 0}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1680991362038023338, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVCQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMay9ob21lL2JvcmlzLnVzdHl1Z292L21pbmljb25kYTMvZW52cy9kZWVwX3JsL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxrL2hvbWUvYm9yaXMudXN0eXVnb3YvbWluaWNvbmRhMy9lbnZzL2RlZXBfcmwvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOYCUb2HgHc+jjgePhRjg77i7wI9ZcR/vAAAAAAAAAAAmusqvIH7l7yS4ZW8M94RPXPuHj3DgGq6AACAPwAAgD8AaHO7PFYRPZfEpT2bCCW+UpjzPBPV9jwAAAAAAAAAAEC01b1vY0o/xYazvamx+r69E12+JDEZvQAAAAAAAAAAmlnFOfsBsz+YhE88ztWTvvnY0zpDxRk9AAAAAAAAAADNHcO9lLiKPs+qEj4hMWK+aviWPdZi0DsAAAAAAAAAALPEuT3uwAY/W8nZvUU9nL7vVT69miIAPAAAAAAAAAAArQxfPsq3Bb3Ck/87CWyWOdS7Zr4+KlC7AACAPwAAgD9AukG+tgE1P1KWND7fbM6+YzVzvmBlUD4AAAAAAAAAADO/L7yWDXk9cbsLvJbvX76asyo9wGs/PQAAAAAAAAAAplGnPrriMT9AFWS+YiT2vsPpgT6wc4W+AAAAAAAAAAAAjs88DE+4PvicDb2OFYa+T+GevWnZmbwAAAAAAAAAADO17TyPZlu6cPL8Ms2R+rAdNmG3FQyQswAAgD8AAIA/huIOvkXPBz94NRs+7vrUvulVyzylhtw8AAAAAAAAAAANMP09PQUHP91IUr7Nb6u+KNP4vKbUDL4AAAAAAAAAAO4ui77qGEc/GGa4PeZB8L4D6u++JVx9PQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVTRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIr15FRodfbkCUhpRSlIwBbJRL/IwBdJRHQIoO6s8xKxt1fZQoaAZoCWgPQwgXZwxzgoNuQJSGlFKUaBVNCwFoFkdAig9oBBAv+XV9lChoBmgJaA9DCJpd91bkQXJAlIaUUpRoFU0RAWgWR0CKEA0iQkondX2UKGgGaAloD0MI8wNXeYITc0CUhpRSlGgVS/1oFkdAihB10DEFXHV9lChoBmgJaA9DCCHp0yr6rHFAlIaUUpRoFUvfaBZHQIoQx75VOsV1fZQoaAZoCWgPQwgaGeQugkFzQJSGlFKUaBVL/GgWR0CKENKSxJNCdX2UKGgGaAloD0MI1SZO7vfSbUCUhpRSlGgVTQYBaBZHQIoRMeS0Sh91fZQoaAZoCWgPQwjyzqEMFZ1wQJSGlFKUaBVNEAFoFkdAihFEd3jdYXV9lChoBmgJaA9DCB+DFafaa29AlIaUUpRoFU0gAWgWR0CKEaxbB42TdX2UKGgGaAloD0MIcQFolK5wcUCUhpRSlGgVS/doFkdAihP2Xsw+MnV9lChoBmgJaA9DCI4fKo0YKXFAlIaUUpRoFU0PAWgWR0CKFJnkkrwwdX2UKGgGaAloD0MIBoTWw1eucECUhpRSlGgVS/1oFkdAihSuCwr1/XV9lChoBmgJaA9DCMH9gAfGbXJAlIaUUpRoFUv0aBZHQIoVch/y5I91fZQoaAZoCWgPQwiY2lIHebVuQJSGlFKUaBVL92gWR0CKFkPluFYddX2UKGgGaAloD0MIKJ1IMFVpcUCUhpRSlGgVTQoBaBZHQIoWfZCfHxV1fZQoaAZoCWgPQwjiAtAonatxQJSGlFKUaBVL4WgWR0CKFyc+aBqcdX2UKGgGaAloD0MICjGXVO0Mb0CUhpRSlGgVS/VoFkdAihhobn5i3HV9lChoBmgJaA9DCPxW68Tl1HBAlIaUUpRoFUvnaBZHQIoYfT9bX6J1fZQoaAZoCWgPQwiY2lIHeeltQJSGlFKUaBVNGAFoFkdAihiHtv4ub3V9lChoBmgJaA9DCFtbeF7qqHFAlIaUUpRoFUv6aBZHQIoZ2D15B1N1fZQoaAZoCWgPQwibqntks5FxQJSGlFKUaBVNBgFoFkdAihoAWznienV9lChoBmgJaA9DCPzjvWplLFFAlIaUUpRoFUuSaBZHQIoa+g13t8h1fZQoaAZoCWgPQwhzvW2mwu9uQJSGlFKUaBVNCwFoFkdAihuOvMbFTHV9lChoBmgJaA9DCBu62R9oqnFAlIaUUpRoFU0nAWgWR0CKHBH9WIXTdX2UKGgGaAloD0MIkiBcAYWPb0CUhpRSlGgVTUABaBZHQIodHAqNIbx1fZQoaAZoCWgPQwjY8zXLJalwQJSGlFKUaBVL7WgWR0CKHa1stTUBdX2UKGgGaAloD0MIJeoFn6ZDcUCUhpRSlGgVTQsBaBZHQIoeHg1m8NB1fZQoaAZoCWgPQwgjLgCNEtFxQJSGlFKUaBVL8WgWR0CKH3GvwEyMdX2UKGgGaAloD0MIS5Ln+j6bckCUhpRSlGgVTSIBaBZHQIofkGX5WR11fZQoaAZoCWgPQwjzWgndpWFwQJSGlFKUaBVNCAFoFkdAiiCZdOZb6nV9lChoBmgJaA9DCAVTzawlK3FAlIaUUpRoFUv5aBZHQIoguG7Bfrt1fZQoaAZoCWgPQwgdWfll8JFwQJSGlFKUaBVL4mgWR0CKIQ+3Ytg8dX2UKGgGaAloD0MINxrAWyC+cECUhpRSlGgVTQcBaBZHQIoiiOcUdrB1fZQoaAZoCWgPQwhQyM7bGPZwQJSGlFKUaBVNFgFoFkdAiiMrYoRZlnV9lChoBmgJaA9DCHTqymc5ZHBAlIaUUpRoFUv4aBZHQIojjUTcqON1fZQoaAZoCWgPQwgXm1YKAVRuQJSGlFKUaBVNFAFoFkdAiiR5BC2MKnV9lChoBmgJaA9DCGiXb31YoG5AlIaUUpRoFU0NAWgWR0CKJVcpsoDxdX2UKGgGaAloD0MI81gzMshGcUCUhpRSlGgVTRMBaBZHQIomIM8YAKh1fZQoaAZoCWgPQwiFRNrGH6BwQJSGlFKUaBVNAwFoFkdAiky0cGTs6nV9lChoBmgJaA9DCHk7wmnBe3FAlIaUUpRoFUv9aBZHQIpNlPBSDRN1fZQoaAZoCWgPQwghVn+EoXByQJSGlFKUaBVNDAFoFkdAik22cSXdCXV9lChoBmgJaA9DCJOmQdH8ZnBAlIaUUpRoFUvzaBZHQIpOzMRpUPx1fZQoaAZoCWgPQwgrw7gbxHByQJSGlFKUaBVNjAJoFkdAik9DVhCtzXV9lChoBmgJaA9DCC20c5qFTW9AlIaUUpRoFU0BAWgWR0CKT0YrJ8v3dX2UKGgGaAloD0MIwHlx4qtXcUCUhpRSlGgVS+hoFkdAik+IVM23rnV9lChoBmgJaA9DCCy3tBpSLXFAlIaUUpRoFU0VAWgWR0CKUShYeT3ZdX2UKGgGaAloD0MI2lVI+Uk7b0CUhpRSlGgVS+9oFkdAilJiDVYp2HV9lChoBmgJaA9DCKH0hZCzhnBAlIaUUpRoFUvyaBZHQIpS7yUcGTt1fZQoaAZoCWgPQwhVa2EW2sFxQJSGlFKUaBVNOQFoFkdAilMv4M4LkXV9lChoBmgJaA9DCF38bU9Q2nJAlIaUUpRoFU0WAWgWR0CKU1dLQHAzdX2UKGgGaAloD0MIrIvbaAB4b0CUhpRSlGgVS/9oFkdAilRVhLGrCHV9lChoBmgJaA9DCEYiNIINenFAlIaUUpRoFUv0aBZHQIpUvechC+l1fZQoaAZoCWgPQwiqEI/Ei95xQJSGlFKUaBVL42gWR0CKVNnkkrwwdX2UKGgGaAloD0MI3Qw34DM9cECUhpRSlGgVS+hoFkdAilXjk2gnMXV9lChoBmgJaA9DCOBlho3yyXNAlIaUUpRoFUvhaBZHQIpWiNp/PPd1fZQoaAZoCWgPQwize/KwEG9xQJSGlFKUaBVNNwJoFkdAilfJ17pmmXV9lChoBmgJaA9DCPiJA+j3JHBAlIaUUpRoFUv4aBZHQIpY8GgSOBF1fZQoaAZoCWgPQwi7Q4oB0j5xQJSGlFKUaBVNIQFoFkdAilj7vw3HaXV9lChoBmgJaA9DCBA9KZMainNAlIaUUpRoFU0DAWgWR0CKWVrylN1ydX2UKGgGaAloD0MIdhiT/p4Uc0CUhpRSlGgVTRMBaBZHQIpZiPluFYd1fZQoaAZoCWgPQwjVlc/yvHdyQJSGlFKUaBVNFQFoFkdAilpENvwVkHV9lChoBmgJaA9DCG8RGOubv21AlIaUUpRoFUvxaBZHQIpbpcqvvBt1fZQoaAZoCWgPQwgclZuoJeVxQJSGlFKUaBVL52gWR0CKXAhcJMQFdX2UKGgGaAloD0MIWB8Pfbcoc0CUhpRSlGgVTSkBaBZHQIpcv7rLQol1fZQoaAZoCWgPQwilT6voj/BtQJSGlFKUaBVL/mgWR0CKXRovi97GdX2UKGgGaAloD0MIC9P3GgKmcUCUhpRSlGgVTQ8BaBZHQIpdXHYHxBp1fZQoaAZoCWgPQwhNnx1wXRRyQJSGlFKUaBVL4GgWR0CKXWZydWhidX2UKGgGaAloD0MIzqW4quw2ckCUhpRSlGgVS+poFkdAil3UDMeOn3V9lChoBmgJaA9DCDF6bqErJHNAlIaUUpRoFUvyaBZHQIpfw8W9DhN1fZQoaAZoCWgPQwhruMg9nR1yQJSGlFKUaBVL72gWR0CKYP9lVcUudX2UKGgGaAloD0MI2o6pu/JlcUCUhpRSlGgVTUwBaBZHQIphCy0KJEZ1fZQoaAZoCWgPQwgonUgwVahyQJSGlFKUaBVNAAFoFkdAimLlW4mTknV9lChoBmgJaA9DCKa21EGesHJAlIaUUpRoFUvnaBZHQIpjViKBNEh1fZQoaAZoCWgPQwhnnfF9cT5xQJSGlFKUaBVL/GgWR0CKY2F6AvtddX2UKGgGaAloD0MI/reSHZtNckCUhpRSlGgVTQUBaBZHQIpjijk+5e91fZQoaAZoCWgPQwj2Yb1Rqx9vQJSGlFKUaBVL4GgWR0CKZMvNeMQ3dX2UKGgGaAloD0MIgufew+VrckCUhpRSlGgVTUUBaBZHQIplrQzDXOJ1fZQoaAZoCWgPQwjItaFi3HRxQJSGlFKUaBVL62gWR0CKZgLWqcVhdX2UKGgGaAloD0MIhqxu9VyxcECUhpRSlGgVS+1oFkdAima/jS5RTHV9lChoBmgJaA9DCKXZPA4DQXBAlIaUUpRoFUv7aBZHQIpnCbUgB911fZQoaAZoCWgPQwhl4etr3bJvQJSGlFKUaBVL82gWR0CKZ46r/82rdX2UKGgGaAloD0MIM2spIG02cECUhpRSlGgVTQMBaBZHQIpnrXpW3jN1fZQoaAZoCWgPQwgyrU1jO6JxQJSGlFKUaBVNPAFoFkdAimglwtJ4B3V9lChoBmgJaA9DCN3temlKHnBAlIaUUpRoFUvwaBZHQIppeQKa5PN1fZQoaAZoCWgPQwj/kenQaSBvQJSGlFKUaBVNBgFoFkdAimuhWo3rEHV9lChoBmgJaA9DCBO1NLfC2XBAlIaUUpRoFU0KAWgWR0CKa8NYr8R+dX2UKGgGaAloD0MIt7OvPIjxckCUhpRSlGgVS+toFkdAimxaqbSZ0HV9lChoBmgJaA9DCByygXTxv3FAlIaUUpRoFUvkaBZHQIpsg0O3DvV1fZQoaAZoCWgPQwj3sBcK2JNwQJSGlFKUaBVNCAFoFkdAim3mHP/rB3V9lChoBmgJaA9DCK33G+04q3NAlIaUUpRoFU0dAWgWR0CKbwRnOB1+dX2UKGgGaAloD0MIJqyNsdNlckCUhpRSlGgVS+doFkdAim9S13MY/HV9lChoBmgJaA9DCP7V474Vs3JAlIaUUpRoFU0JAWgWR0CKb4gzP8htdX2UKGgGaAloD0MIO1J955cZc0CUhpRSlGgVTQgBaBZHQIpwXE4vN/x1fZQoaAZoCWgPQwiKPbSPFZBVQJSGlFKUaBVLtmgWR0CKcPlbu+h5dX2UKGgGaAloD0MIqg65Ga7wcECUhpRSlGgVS/loFkdAinEcRlHz6XV9lChoBmgJaA9DCFQ57Sl52HBAlIaUUpRoFUv0aBZHQIpxbKcNH6N1fZQoaAZoCWgPQwj3rkFfupZyQJSGlFKUaBVL5WgWR0CKcXW5H3DfdX2UKGgGaAloD0MImiZsP9lfckCUhpRSlGgVTQMBaBZHQIpyB+F10T11fZQoaAZoCWgPQwgyAFRxo+hxQJSGlFKUaBVNKAFoFkdAinKDhcZ9/nV9lChoBmgJaA9DCJQyqaGNaXBAlIaUUpRoFUveaBZHQIp0PTuv2Xd1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVCQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMay9ob21lL2JvcmlzLnVzdHl1Z292L21pbmljb25kYTMvZW52cy9kZWVwX3JsL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxrL2hvbWUvYm9yaXMudXN0eXVnb3YvbWluaWNvbmRhMy9lbnZzL2RlZXBfcmwvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-4.18.0-372.9.1.el8.x86_64-x86_64-with-glibc2.28 #1 SMP Tue May 10 08:57:35 EDT 2022", "Python": "3.10.8", "Stable-Baselines3": "1.7.0a10", "PyTorch": "1.12.1", "GPU Enabled": "True", "Numpy": "1.23.5", "Gym": "0.23.0"}}
|
ppo-sb3-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5c370a63bb0bfff11f83e75373d8a1561889943aadefadf740f85f688a8e600c
|
3 |
+
size 147662
|
ppo-sb3-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0a10
|
ppo-sb3-LunarLander-v2/data
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f786c2ac790>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f786c2ac820>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f786c2ac8b0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f786c2ac940>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f786c2ac9d0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f786c2aca60>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f786c2acaf0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f786c2acb80>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f786c2acc10>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f786c2acca0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f786c2acd30>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f786c2acdc0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f786c94e2c0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAAAAAAAAAAAlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
8
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gAWVkgAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROjAVzdGFydJRLAHViLg==",
|
40 |
+
"n": 4,
|
41 |
+
"_shape": [],
|
42 |
+
"dtype": "int64",
|
43 |
+
"_np_random": null,
|
44 |
+
"start": 0
|
45 |
+
},
|
46 |
+
"n_envs": 16,
|
47 |
+
"num_timesteps": 1015808,
|
48 |
+
"_total_timesteps": 1000000,
|
49 |
+
"_num_timesteps_at_start": 0,
|
50 |
+
"seed": null,
|
51 |
+
"action_noise": null,
|
52 |
+
"start_time": 1680991362038023338,
|
53 |
+
"learning_rate": 0.0003,
|
54 |
+
"tensorboard_log": null,
|
55 |
+
"lr_schedule": {
|
56 |
+
":type:": "<class 'function'>",
|
57 |
+
":serialized:": "gAWVCQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMay9ob21lL2JvcmlzLnVzdHl1Z292L21pbmljb25kYTMvZW52cy9kZWVwX3JsL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxrL2hvbWUvYm9yaXMudXN0eXVnb3YvbWluaWNvbmRhMy9lbnZzL2RlZXBfcmwvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
58 |
+
},
|
59 |
+
"_last_obs": {
|
60 |
+
":type:": "<class 'numpy.ndarray'>",
|
61 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOYCUb2HgHc+jjgePhRjg77i7wI9ZcR/vAAAAAAAAAAAmusqvIH7l7yS4ZW8M94RPXPuHj3DgGq6AACAPwAAgD8AaHO7PFYRPZfEpT2bCCW+UpjzPBPV9jwAAAAAAAAAAEC01b1vY0o/xYazvamx+r69E12+JDEZvQAAAAAAAAAAmlnFOfsBsz+YhE88ztWTvvnY0zpDxRk9AAAAAAAAAADNHcO9lLiKPs+qEj4hMWK+aviWPdZi0DsAAAAAAAAAALPEuT3uwAY/W8nZvUU9nL7vVT69miIAPAAAAAAAAAAArQxfPsq3Bb3Ck/87CWyWOdS7Zr4+KlC7AACAPwAAgD9AukG+tgE1P1KWND7fbM6+YzVzvmBlUD4AAAAAAAAAADO/L7yWDXk9cbsLvJbvX76asyo9wGs/PQAAAAAAAAAAplGnPrriMT9AFWS+YiT2vsPpgT6wc4W+AAAAAAAAAAAAjs88DE+4PvicDb2OFYa+T+GevWnZmbwAAAAAAAAAADO17TyPZlu6cPL8Ms2R+rAdNmG3FQyQswAAgD8AAIA/huIOvkXPBz94NRs+7vrUvulVyzylhtw8AAAAAAAAAAANMP09PQUHP91IUr7Nb6u+KNP4vKbUDL4AAAAAAAAAAO4ui77qGEc/GGa4PeZB8L4D6u++JVx9PQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
62 |
+
},
|
63 |
+
"_last_episode_starts": {
|
64 |
+
":type:": "<class 'numpy.ndarray'>",
|
65 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
66 |
+
},
|
67 |
+
"_last_original_obs": null,
|
68 |
+
"_episode_num": 0,
|
69 |
+
"use_sde": false,
|
70 |
+
"sde_sample_freq": -1,
|
71 |
+
"_current_progress_remaining": -0.015808000000000044,
|
72 |
+
"ep_info_buffer": {
|
73 |
+
":type:": "<class 'collections.deque'>",
|
74 |
+
":serialized:": "gAWVTRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIr15FRodfbkCUhpRSlIwBbJRL/IwBdJRHQIoO6s8xKxt1fZQoaAZoCWgPQwgXZwxzgoNuQJSGlFKUaBVNCwFoFkdAig9oBBAv+XV9lChoBmgJaA9DCJpd91bkQXJAlIaUUpRoFU0RAWgWR0CKEA0iQkondX2UKGgGaAloD0MI8wNXeYITc0CUhpRSlGgVS/1oFkdAihB10DEFXHV9lChoBmgJaA9DCCHp0yr6rHFAlIaUUpRoFUvfaBZHQIoQx75VOsV1fZQoaAZoCWgPQwgaGeQugkFzQJSGlFKUaBVL/GgWR0CKENKSxJNCdX2UKGgGaAloD0MI1SZO7vfSbUCUhpRSlGgVTQYBaBZHQIoRMeS0Sh91fZQoaAZoCWgPQwjyzqEMFZ1wQJSGlFKUaBVNEAFoFkdAihFEd3jdYXV9lChoBmgJaA9DCB+DFafaa29AlIaUUpRoFU0gAWgWR0CKEaxbB42TdX2UKGgGaAloD0MIcQFolK5wcUCUhpRSlGgVS/doFkdAihP2Xsw+MnV9lChoBmgJaA9DCI4fKo0YKXFAlIaUUpRoFU0PAWgWR0CKFJnkkrwwdX2UKGgGaAloD0MIBoTWw1eucECUhpRSlGgVS/1oFkdAihSuCwr1/XV9lChoBmgJaA9DCMH9gAfGbXJAlIaUUpRoFUv0aBZHQIoVch/y5I91fZQoaAZoCWgPQwiY2lIHebVuQJSGlFKUaBVL92gWR0CKFkPluFYddX2UKGgGaAloD0MIKJ1IMFVpcUCUhpRSlGgVTQoBaBZHQIoWfZCfHxV1fZQoaAZoCWgPQwjiAtAonatxQJSGlFKUaBVL4WgWR0CKFyc+aBqcdX2UKGgGaAloD0MICjGXVO0Mb0CUhpRSlGgVS/VoFkdAihhobn5i3HV9lChoBmgJaA9DCPxW68Tl1HBAlIaUUpRoFUvnaBZHQIoYfT9bX6J1fZQoaAZoCWgPQwiY2lIHeeltQJSGlFKUaBVNGAFoFkdAihiHtv4ub3V9lChoBmgJaA9DCFtbeF7qqHFAlIaUUpRoFUv6aBZHQIoZ2D15B1N1fZQoaAZoCWgPQwibqntks5FxQJSGlFKUaBVNBgFoFkdAihoAWznienV9lChoBmgJaA9DCPzjvWplLFFAlIaUUpRoFUuSaBZHQIoa+g13t8h1fZQoaAZoCWgPQwhzvW2mwu9uQJSGlFKUaBVNCwFoFkdAihuOvMbFTHV9lChoBmgJaA9DCBu62R9oqnFAlIaUUpRoFU0nAWgWR0CKHBH9WIXTdX2UKGgGaAloD0MIkiBcAYWPb0CUhpRSlGgVTUABaBZHQIodHAqNIbx1fZQoaAZoCWgPQwjY8zXLJalwQJSGlFKUaBVL7WgWR0CKHa1stTUBdX2UKGgGaAloD0MIJeoFn6ZDcUCUhpRSlGgVTQsBaBZHQIoeHg1m8NB1fZQoaAZoCWgPQwgjLgCNEtFxQJSGlFKUaBVL8WgWR0CKH3GvwEyMdX2UKGgGaAloD0MIS5Ln+j6bckCUhpRSlGgVTSIBaBZHQIofkGX5WR11fZQoaAZoCWgPQwjzWgndpWFwQJSGlFKUaBVNCAFoFkdAiiCZdOZb6nV9lChoBmgJaA9DCAVTzawlK3FAlIaUUpRoFUv5aBZHQIoguG7Bfrt1fZQoaAZoCWgPQwgdWfll8JFwQJSGlFKUaBVL4mgWR0CKIQ+3Ytg8dX2UKGgGaAloD0MINxrAWyC+cECUhpRSlGgVTQcBaBZHQIoiiOcUdrB1fZQoaAZoCWgPQwhQyM7bGPZwQJSGlFKUaBVNFgFoFkdAiiMrYoRZlnV9lChoBmgJaA9DCHTqymc5ZHBAlIaUUpRoFUv4aBZHQIojjUTcqON1fZQoaAZoCWgPQwgXm1YKAVRuQJSGlFKUaBVNFAFoFkdAiiR5BC2MKnV9lChoBmgJaA9DCGiXb31YoG5AlIaUUpRoFU0NAWgWR0CKJVcpsoDxdX2UKGgGaAloD0MI81gzMshGcUCUhpRSlGgVTRMBaBZHQIomIM8YAKh1fZQoaAZoCWgPQwiFRNrGH6BwQJSGlFKUaBVNAwFoFkdAiky0cGTs6nV9lChoBmgJaA9DCHk7wmnBe3FAlIaUUpRoFUv9aBZHQIpNlPBSDRN1fZQoaAZoCWgPQwghVn+EoXByQJSGlFKUaBVNDAFoFkdAik22cSXdCXV9lChoBmgJaA9DCJOmQdH8ZnBAlIaUUpRoFUvzaBZHQIpOzMRpUPx1fZQoaAZoCWgPQwgrw7gbxHByQJSGlFKUaBVNjAJoFkdAik9DVhCtzXV9lChoBmgJaA9DCC20c5qFTW9AlIaUUpRoFU0BAWgWR0CKT0YrJ8v3dX2UKGgGaAloD0MIwHlx4qtXcUCUhpRSlGgVS+hoFkdAik+IVM23rnV9lChoBmgJaA9DCCy3tBpSLXFAlIaUUpRoFU0VAWgWR0CKUShYeT3ZdX2UKGgGaAloD0MI2lVI+Uk7b0CUhpRSlGgVS+9oFkdAilJiDVYp2HV9lChoBmgJaA9DCKH0hZCzhnBAlIaUUpRoFUvyaBZHQIpS7yUcGTt1fZQoaAZoCWgPQwhVa2EW2sFxQJSGlFKUaBVNOQFoFkdAilMv4M4LkXV9lChoBmgJaA9DCF38bU9Q2nJAlIaUUpRoFU0WAWgWR0CKU1dLQHAzdX2UKGgGaAloD0MIrIvbaAB4b0CUhpRSlGgVS/9oFkdAilRVhLGrCHV9lChoBmgJaA9DCEYiNIINenFAlIaUUpRoFUv0aBZHQIpUvechC+l1fZQoaAZoCWgPQwiqEI/Ei95xQJSGlFKUaBVL42gWR0CKVNnkkrwwdX2UKGgGaAloD0MI3Qw34DM9cECUhpRSlGgVS+hoFkdAilXjk2gnMXV9lChoBmgJaA9DCOBlho3yyXNAlIaUUpRoFUvhaBZHQIpWiNp/PPd1fZQoaAZoCWgPQwize/KwEG9xQJSGlFKUaBVNNwJoFkdAilfJ17pmmXV9lChoBmgJaA9DCPiJA+j3JHBAlIaUUpRoFUv4aBZHQIpY8GgSOBF1fZQoaAZoCWgPQwi7Q4oB0j5xQJSGlFKUaBVNIQFoFkdAilj7vw3HaXV9lChoBmgJaA9DCBA9KZMainNAlIaUUpRoFU0DAWgWR0CKWVrylN1ydX2UKGgGaAloD0MIdhiT/p4Uc0CUhpRSlGgVTRMBaBZHQIpZiPluFYd1fZQoaAZoCWgPQwjVlc/yvHdyQJSGlFKUaBVNFQFoFkdAilpENvwVkHV9lChoBmgJaA9DCG8RGOubv21AlIaUUpRoFUvxaBZHQIpbpcqvvBt1fZQoaAZoCWgPQwgclZuoJeVxQJSGlFKUaBVL52gWR0CKXAhcJMQFdX2UKGgGaAloD0MIWB8Pfbcoc0CUhpRSlGgVTSkBaBZHQIpcv7rLQol1fZQoaAZoCWgPQwilT6voj/BtQJSGlFKUaBVL/mgWR0CKXRovi97GdX2UKGgGaAloD0MIC9P3GgKmcUCUhpRSlGgVTQ8BaBZHQIpdXHYHxBp1fZQoaAZoCWgPQwhNnx1wXRRyQJSGlFKUaBVL4GgWR0CKXWZydWhidX2UKGgGaAloD0MIzqW4quw2ckCUhpRSlGgVS+poFkdAil3UDMeOn3V9lChoBmgJaA9DCDF6bqErJHNAlIaUUpRoFUvyaBZHQIpfw8W9DhN1fZQoaAZoCWgPQwhruMg9nR1yQJSGlFKUaBVL72gWR0CKYP9lVcUudX2UKGgGaAloD0MI2o6pu/JlcUCUhpRSlGgVTUwBaBZHQIphCy0KJEZ1fZQoaAZoCWgPQwgonUgwVahyQJSGlFKUaBVNAAFoFkdAimLlW4mTknV9lChoBmgJaA9DCKa21EGesHJAlIaUUpRoFUvnaBZHQIpjViKBNEh1fZQoaAZoCWgPQwhnnfF9cT5xQJSGlFKUaBVL/GgWR0CKY2F6AvtddX2UKGgGaAloD0MI/reSHZtNckCUhpRSlGgVTQUBaBZHQIpjijk+5e91fZQoaAZoCWgPQwj2Yb1Rqx9vQJSGlFKUaBVL4GgWR0CKZMvNeMQ3dX2UKGgGaAloD0MIgufew+VrckCUhpRSlGgVTUUBaBZHQIplrQzDXOJ1fZQoaAZoCWgPQwjItaFi3HRxQJSGlFKUaBVL62gWR0CKZgLWqcVhdX2UKGgGaAloD0MIhqxu9VyxcECUhpRSlGgVS+1oFkdAima/jS5RTHV9lChoBmgJaA9DCKXZPA4DQXBAlIaUUpRoFUv7aBZHQIpnCbUgB911fZQoaAZoCWgPQwhl4etr3bJvQJSGlFKUaBVL82gWR0CKZ46r/82rdX2UKGgGaAloD0MIM2spIG02cECUhpRSlGgVTQMBaBZHQIpnrXpW3jN1fZQoaAZoCWgPQwgyrU1jO6JxQJSGlFKUaBVNPAFoFkdAimglwtJ4B3V9lChoBmgJaA9DCN3temlKHnBAlIaUUpRoFUvwaBZHQIppeQKa5PN1fZQoaAZoCWgPQwj/kenQaSBvQJSGlFKUaBVNBgFoFkdAimuhWo3rEHV9lChoBmgJaA9DCBO1NLfC2XBAlIaUUpRoFU0KAWgWR0CKa8NYr8R+dX2UKGgGaAloD0MIt7OvPIjxckCUhpRSlGgVS+toFkdAimxaqbSZ0HV9lChoBmgJaA9DCByygXTxv3FAlIaUUpRoFUvkaBZHQIpsg0O3DvV1fZQoaAZoCWgPQwj3sBcK2JNwQJSGlFKUaBVNCAFoFkdAim3mHP/rB3V9lChoBmgJaA9DCK33G+04q3NAlIaUUpRoFU0dAWgWR0CKbwRnOB1+dX2UKGgGaAloD0MIJqyNsdNlckCUhpRSlGgVS+doFkdAim9S13MY/HV9lChoBmgJaA9DCP7V474Vs3JAlIaUUpRoFU0JAWgWR0CKb4gzP8htdX2UKGgGaAloD0MIO1J955cZc0CUhpRSlGgVTQgBaBZHQIpwXE4vN/x1fZQoaAZoCWgPQwiKPbSPFZBVQJSGlFKUaBVLtmgWR0CKcPlbu+h5dX2UKGgGaAloD0MIqg65Ga7wcECUhpRSlGgVS/loFkdAinEcRlHz6XV9lChoBmgJaA9DCFQ57Sl52HBAlIaUUpRoFUv0aBZHQIpxbKcNH6N1fZQoaAZoCWgPQwj3rkFfupZyQJSGlFKUaBVL5WgWR0CKcXW5H3DfdX2UKGgGaAloD0MImiZsP9lfckCUhpRSlGgVTQMBaBZHQIpyB+F10T11fZQoaAZoCWgPQwgyAFRxo+hxQJSGlFKUaBVNKAFoFkdAinKDhcZ9/nV9lChoBmgJaA9DCJQyqaGNaXBAlIaUUpRoFUveaBZHQIp0PTuv2Xd1ZS4="
|
75 |
+
},
|
76 |
+
"ep_success_buffer": {
|
77 |
+
":type:": "<class 'collections.deque'>",
|
78 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
79 |
+
},
|
80 |
+
"_n_updates": 248,
|
81 |
+
"n_steps": 1024,
|
82 |
+
"gamma": 0.999,
|
83 |
+
"gae_lambda": 0.98,
|
84 |
+
"ent_coef": 0.01,
|
85 |
+
"vf_coef": 0.5,
|
86 |
+
"max_grad_norm": 0.5,
|
87 |
+
"batch_size": 64,
|
88 |
+
"n_epochs": 4,
|
89 |
+
"clip_range": {
|
90 |
+
":type:": "<class 'function'>",
|
91 |
+
":serialized:": "gAWVCQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMay9ob21lL2JvcmlzLnVzdHl1Z292L21pbmljb25kYTMvZW52cy9kZWVwX3JsL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxrL2hvbWUvYm9yaXMudXN0eXVnb3YvbWluaWNvbmRhMy9lbnZzL2RlZXBfcmwvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
92 |
+
},
|
93 |
+
"clip_range_vf": null,
|
94 |
+
"normalize_advantage": true,
|
95 |
+
"target_kl": null
|
96 |
+
}
|
ppo-sb3-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:105e3d2785b35a31643887ad8bb61220b70345cf8d068fef6501d9b377ea457f
|
3 |
+
size 87993
|
ppo-sb3-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ce189562f401eee37983fadcbb789834f436068cb155d11df74713a3959091ad
|
3 |
+
size 43393
|
ppo-sb3-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-sb3-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-4.18.0-372.9.1.el8.x86_64-x86_64-with-glibc2.28 #1 SMP Tue May 10 08:57:35 EDT 2022
|
2 |
+
Python: 3.10.8
|
3 |
+
Stable-Baselines3: 1.7.0a10
|
4 |
+
PyTorch: 1.12.1
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.23.5
|
7 |
+
Gym: 0.23.0
|
replay.mp4
ADDED
Binary file (166 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 269.4942343418983, "std_reward": 26.69780286431577, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-09T11:36:04.110336"}
|