File size: 4,590 Bytes
5acb45d
 
62c9221
5acb45d
 
62c9221
 
5acb45d
 
 
 
 
 
 
 
 
 
 
 
 
62c9221
5acb45d
62c9221
5acb45d
62c9221
5acb45d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
---
library_name: transformers
license: apache-2.0
base_model: rinna/japanese-hubert-base
tags:
- automatic-speech-recognition
- original_kakeiken_W_closed_add_ver2
- generated_from_trainer
metrics:
- wer
model-index:
- name: Hubert-kakeiken-W-closed_add_ver2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Hubert-kakeiken-W-closed_add_ver2

This model is a fine-tuned version of [rinna/japanese-hubert-base](https://huggingface.co/rinna/japanese-hubert-base) on the ORIGINAL_KAKEIKEN_W_CLOSED_ADD_VER2 - JA dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0617
- Wer: 0.9988
- Cer: 1.0129

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 12500
- num_epochs: 40.0
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch   | Step  | Validation Loss | Wer    | Cer    |
|:-------------:|:-------:|:-----:|:---------------:|:------:|:------:|
| 28.4059       | 1.0     | 880   | 10.6721         | 1.0    | 1.1284 |
| 9.1792        | 2.0     | 1760  | 6.9924          | 1.0    | 1.1284 |
| 4.9143        | 3.0     | 2640  | 3.8166          | 1.0    | 1.1284 |
| 3.1394        | 4.0     | 3520  | 2.8829          | 1.0    | 1.1283 |
| 2.7266        | 5.0     | 4400  | 1.9608          | 1.0    | 1.1444 |
| 1.4314        | 6.0     | 5280  | 0.8434          | 0.9999 | 1.0662 |
| 0.6837        | 7.0     | 6160  | 0.4583          | 0.9997 | 1.0330 |
| 0.403         | 8.0     | 7040  | 0.2512          | 0.9991 | 1.0479 |
| 0.3035        | 9.0     | 7920  | 0.1972          | 0.9993 | 1.0365 |
| 0.229         | 10.0    | 8800  | 0.0872          | 0.9991 | 1.0264 |
| 0.1995        | 11.0    | 9680  | 0.0959          | 0.9988 | 1.0262 |
| 0.1824        | 12.0    | 10560 | 0.1012          | 0.9988 | 1.0317 |
| 0.1774        | 13.0    | 11440 | 0.0541          | 0.9991 | 1.0220 |
| 0.1739        | 14.0    | 12320 | 0.0703          | 0.9990 | 1.0270 |
| 0.1609        | 15.0    | 13200 | 0.0480          | 0.9988 | 1.0203 |
| 0.1512        | 16.0    | 14080 | 0.0540          | 0.9988 | 1.0162 |
| 0.1412        | 17.0    | 14960 | 0.0396          | 0.9988 | 1.0188 |
| 0.1391        | 18.0    | 15840 | 0.0493          | 0.9988 | 1.0195 |
| 0.1325        | 19.0    | 16720 | 0.0366          | 0.9988 | 1.0186 |
| 0.1242        | 20.0    | 17600 | 0.0392          | 0.9988 | 1.0178 |
| 0.122         | 21.0    | 18480 | 0.0545          | 0.9988 | 1.0193 |
| 0.1143        | 22.0    | 19360 | 0.0408          | 0.9988 | 1.0185 |
| 0.1087        | 23.0    | 20240 | 0.0310          | 0.9988 | 1.0176 |
| 0.1013        | 24.0    | 21120 | 0.0262          | 0.9988 | 1.0166 |
| 0.0998        | 25.0    | 22000 | 0.0388          | 0.9988 | 1.0199 |
| 0.0903        | 26.0    | 22880 | 0.0280          | 0.9988 | 1.0166 |
| 0.088         | 27.0    | 23760 | 0.0492          | 0.9988 | 1.0197 |
| 0.0838        | 28.0    | 24640 | 0.0230          | 0.9988 | 1.0163 |
| 0.079         | 29.0    | 25520 | 0.0282          | 0.9988 | 1.0170 |
| 0.0747        | 30.0    | 26400 | 0.0271          | 0.9988 | 1.0162 |
| 0.0692        | 31.0    | 27280 | 0.0272          | 0.9988 | 1.0167 |
| 0.0699        | 32.0    | 28160 | 0.0427          | 0.9988 | 1.0143 |
| 0.0652        | 33.0    | 29040 | 0.0324          | 0.9988 | 1.0162 |
| 0.0624        | 34.0    | 29920 | 0.0315          | 0.9988 | 1.0163 |
| 0.0588        | 35.0    | 30800 | 0.0549          | 0.9988 | 1.0137 |
| 0.0594        | 36.0    | 31680 | 0.0457          | 0.9988 | 1.0142 |
| 0.0619        | 37.0    | 32560 | 0.0463          | 0.9988 | 1.0144 |
| 0.058         | 38.0    | 33440 | 0.0665          | 0.9988 | 1.0127 |
| 0.059         | 39.0    | 34320 | 0.0595          | 0.9988 | 1.0131 |
| 0.0563        | 39.9551 | 35160 | 0.0581          | 0.9988 | 1.0133 |


### Framework versions

- Transformers 4.48.0
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.21.0