Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
datasets:
|
| 3 |
+
- upb-nlp/article_to_search_query
|
| 4 |
+
language:
|
| 5 |
+
- ro
|
| 6 |
+
- en
|
| 7 |
+
base_model:
|
| 8 |
+
- OpenLLM-Ro/RoLlama2-7b-Base
|
| 9 |
+
---
|
| 10 |
+
|
| 11 |
+
## How to Get Started with the Model
|
| 12 |
+
|
| 13 |
+
Use the code below to get started with the model.
|
| 14 |
+
|
| 15 |
+
```python
|
| 16 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 17 |
+
|
| 18 |
+
tokenizer = AutoTokenizer.from_pretrained("upb-nlp/rollama2_7b_article_to_search_query")
|
| 19 |
+
model = AutoModelForCausalLM.from_pretrained("upb-nlp/rollama2_7b_article_to_search_query")
|
| 20 |
+
|
| 21 |
+
BASE_PROMPT = """You are a tool that turns news articles into realistic Google search queries someone might use to find the article.
|
| 22 |
+
|
| 23 |
+
<article>
|
| 24 |
+
{}
|
| 25 |
+
</article>
|
| 26 |
+
|
| 27 |
+
search query: """
|
| 28 |
+
|
| 29 |
+
INPUT_ARTICLE = "This is your article's title. This is your article's body."
|
| 30 |
+
input_text = BASE_PROMPT.format(INPUT_ARTICLE)
|
| 31 |
+
|
| 32 |
+
input_ids = tokenizer(input_text, truncation=True, max_length=1024, return_tensors="pt").to(torch.device('cuda'))
|
| 33 |
+
outputs = model.generate(**input_ids, max_new_tokens=100)
|
| 34 |
+
decoded_output = tokenizer.decode(outputs[0])
|
| 35 |
+
```
|