shimmyshimmer commited on
Commit
d67b667
·
verified ·
1 Parent(s): c6aa575

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +46 -57
README.md CHANGED
@@ -1,14 +1,52 @@
1
  ---
2
- license: gemma
 
 
3
  library_name: transformers
4
- pipeline_tag: text-generation
5
- extra_gated_heading: Access Gemma on Hugging Face
6
- extra_gated_prompt: >-
7
- To access Gemma on Hugging Face, you’re required to review and agree to
8
- Google’s usage license. To do this, please ensure you’re logged in to Hugging
9
- Face and click below. Requests are processed immediately.
10
- extra_gated_button_content: Acknowledge license
11
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
 
13
  # Gemma 3 model card
14
 
@@ -44,55 +82,6 @@ limited resources such as laptops, desktops or your own cloud infrastructure,
44
  democratizing access to state of the art AI models and helping foster innovation
45
  for everyone.
46
 
47
- ### Usage
48
-
49
- Below, there are some code snippets on how to get quickly started with running the model. First, install the Transformers library with the version made for Gemma 3:
50
-
51
- ```sh
52
-
53
- $ pip install git+https://github.com/huggingface/[email protected]
54
-
55
- ```
56
-
57
- Then, copy the snippet from the section that is relevant for your use case.
58
-
59
- #### Running with the `pipeline` API
60
-
61
- ```python
62
- from transformers import pipeline
63
-
64
- pipe = pipeline("text-generation", model="google/gemma-3-1b-pt", device="cuda", torch_dtype=torch.bfloat16)
65
- output = pipe("Eiffel tower is located in", max_new_tokens=50)
66
- ```
67
-
68
- #### Running the model on a single / multi GPU
69
-
70
- ```python
71
- import torch
72
- from transformers import AutoTokenizer, Gemma3ForCausalLM
73
-
74
- ckpt = "google/gemma-3-1b-pt"
75
- tokenizer = AutoTokenizer.from_pretrained(ckpt)
76
- model = Gemma3ForCausalLM.from_pretrained(
77
- ckpt,
78
- torch_dtype=torch.bfloat16,
79
- device_map="auto"
80
- )
81
-
82
- prompt = "Eiffel tower is located in"
83
- model_inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
84
-
85
- input_len = model_inputs["input_ids"].shape[-1]
86
-
87
- with torch.inference_mode():
88
- generation = model.generate(**model_inputs, max_new_tokens=50, do_sample=False)
89
- generation = generation[0][input_len:]
90
-
91
- decoded = tokenizer.decode(generation, skip_special_tokens=True)
92
- print(decoded)
93
- ```
94
-
95
-
96
  ### Inputs and outputs
97
 
98
  - **Input:**
 
1
  ---
2
+ base_model: google/gemma-3-1b-pt
3
+ language:
4
+ - en
5
  library_name: transformers
6
+ license: gemma
7
+ tags:
8
+ - unsloth
9
+ - transformers
10
+ - gemma3
11
+ - gemma
12
+ - google
13
  ---
14
+ <div>
15
+ <p style="margin-bottom: 0; margin-top: 0;">
16
+ <strong>See <a href="https://huggingface.co/collections/unsloth/gemma-3-67d12b7e8816ec6efa7e4e5b">our collection</a> for all versions of Gemma 3 including GGUF, 4-bit & 16-bit formats.</strong>
17
+ </p>
18
+ <p style="margin-bottom: 0;">
19
+ <em>Unsloth's Gemma 3 <a href="https://unsloth.ai/blog/dynamic-4bit">Dynamic Quants</a> is selectively quantized, greatly improving accuracy over standard 4-bit.</em>
20
+ </p>
21
+ <div style="display: flex; gap: 5px; align-items: center; ">
22
+ <a href="https://github.com/unslothai/unsloth/">
23
+ <img src="https://github.com/unslothai/unsloth/raw/main/images/unsloth%20new%20logo.png" width="133">
24
+ </a>
25
+ <a href="https://discord.gg/unsloth">
26
+ <img src="https://github.com/unslothai/unsloth/raw/main/images/Discord%20button.png" width="173">
27
+ </a>
28
+ <a href="https://docs.unsloth.ai/basics/tutorial-how-to-run-deepseek-r1-on-your-own-local-device">
29
+ <img src="https://raw.githubusercontent.com/unslothai/unsloth/refs/heads/main/images/documentation%20green%20button.png" width="143">
30
+ </a>
31
+ </div>
32
+ <h1 style="margin-top: 0rem;">✨ Fine-tune Gemma 3 with Unsloth!</h1>
33
+ </div>
34
+
35
+ - Fine-tune Gemma 3 (12B) for free using our Google [Colab notebook here](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Gemma3.ipynb)!
36
+ - Read our Blog about Gemma 3 support: [unsloth.ai/blog/gemma3](https://unsloth.ai/blog/gemma3)
37
+ - View the rest of our notebooks in our [docs here](https://docs.unsloth.ai/get-started/unsloth-notebooks).
38
+ - Export your fine-tuned model to GGUF, Ollama, llama.cpp or 🤗HF.
39
+
40
+ | Unsloth supports | Free Notebooks | Performance | Memory use |
41
+ |-----------------|--------------------------------------------------------------------------------------------------------------------------|-------------|----------|
42
+ | **GRPO with Gemma 3 (12B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Gemma_3_(12B)-GRPO.ipynb) | 2x faster | 80% less |
43
+ | **Llama-3.2 (3B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3.2_(1B_and_3B)-Conversational.ipynb) | 2.4x faster | 58% less |
44
+ | **Llama-3.2 (11B vision)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3.2_(11B)-Vision.ipynb) | 2x faster | 60% less |
45
+ | **Qwen2.5 (7B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Qwen2.5_(7B)-Alpaca.ipynb) | 2x faster | 60% less |
46
+ | **Phi-4 (14B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Phi_4-Conversational.ipynb) | 2x faster | 50% less |
47
+ | **Mistral (7B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Mistral_v0.3_(7B)-Conversational.ipynb) | 2.2x faster | 62% less |
48
+
49
+ <br>
50
 
51
  # Gemma 3 model card
52
 
 
82
  democratizing access to state of the art AI models and helping foster innovation
83
  for everyone.
84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85
  ### Inputs and outputs
86
 
87
  - **Input:**