Update README.md
Browse files
README.md
CHANGED
@@ -1,14 +1,52 @@
|
|
1 |
---
|
2 |
-
|
|
|
|
|
3 |
library_name: transformers
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
# Gemma 3 model card
|
14 |
|
@@ -58,87 +96,6 @@ for everyone.
|
|
58 |
question, analysis of image content, or a summary of a document
|
59 |
- Total output context of 8192 tokens
|
60 |
|
61 |
-
### Usage
|
62 |
-
|
63 |
-
Below, there are some code snippets on how to get quickly started with running the model. First, install the Transformers library with the version made for Gemma 3:
|
64 |
-
|
65 |
-
```sh
|
66 |
-
|
67 |
-
$ pip install git+https://github.com/huggingface/[email protected]
|
68 |
-
|
69 |
-
```
|
70 |
-
|
71 |
-
Then, copy the snippet from the section that is relevant for your use case.
|
72 |
-
|
73 |
-
#### Running with the `pipeline` API
|
74 |
-
|
75 |
-
With instruction-tuned models, you need to use chat templates to process our inputs first. Then, you can pass it to the pipeline.
|
76 |
-
|
77 |
-
```python
|
78 |
-
from transformers import pipeline
|
79 |
-
|
80 |
-
pipe = pipeline("text-generation", model="google/gemma-3-1b-it", device="cuda", torch_dtype=torch.bfloat16)
|
81 |
-
|
82 |
-
messages = [
|
83 |
-
[
|
84 |
-
{
|
85 |
-
"role": "system",
|
86 |
-
"content": [{"type": "text", "text": "You are a helpful assistant."},]
|
87 |
-
},
|
88 |
-
{
|
89 |
-
"role": "user",
|
90 |
-
"content": [{"type": "text", "text": "Write a poem on Hugging Face, the company"},]
|
91 |
-
},
|
92 |
-
],
|
93 |
-
]
|
94 |
-
|
95 |
-
output = pipe(messages, max_new_tokens=50)
|
96 |
-
```
|
97 |
-
|
98 |
-
#### Running the model on a single / multi GPU
|
99 |
-
|
100 |
-
```python
|
101 |
-
from transformers import AutoTokenizer, BitsAndBytesConfig, Gemma3ForCausalLM
|
102 |
-
import torch
|
103 |
-
|
104 |
-
model_id = "google/gemma-3-1b-it"
|
105 |
-
|
106 |
-
quantization_config = BitsAndBytesConfig(load_in_8bit=True)
|
107 |
-
|
108 |
-
model = Gemma3ForCausalLM.from_pretrained(
|
109 |
-
model_id, quantization_config=quantization_config
|
110 |
-
).eval()
|
111 |
-
|
112 |
-
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
113 |
-
|
114 |
-
messages = [
|
115 |
-
[
|
116 |
-
{
|
117 |
-
"role": "system",
|
118 |
-
"content": [{"type": "text", "text": "You are a helpful assistant."},]
|
119 |
-
},
|
120 |
-
{
|
121 |
-
"role": "user",
|
122 |
-
"content": [{"type": "text", "text": "Write a poem on Hugging Face, the company"},]
|
123 |
-
},
|
124 |
-
],
|
125 |
-
]
|
126 |
-
inputs = tokenizer.apply_chat_template(
|
127 |
-
messages,
|
128 |
-
add_generation_prompt=True,
|
129 |
-
tokenize=True,
|
130 |
-
return_dict=True,
|
131 |
-
return_tensors="pt",
|
132 |
-
).to(model.device).to(torch.bfloat16)
|
133 |
-
|
134 |
-
|
135 |
-
with torch.inference_mode():
|
136 |
-
outputs = model.generate(**inputs, max_new_tokens=64)
|
137 |
-
|
138 |
-
outputs = tokenizer.batch_decode(outputs)
|
139 |
-
```
|
140 |
-
|
141 |
-
|
142 |
### Citation
|
143 |
|
144 |
```none
|
|
|
1 |
---
|
2 |
+
base_model: google/gemma-3-1b-it
|
3 |
+
language:
|
4 |
+
- en
|
5 |
library_name: transformers
|
6 |
+
license: gemma
|
7 |
+
tags:
|
8 |
+
- unsloth
|
9 |
+
- transformers
|
10 |
+
- gemma3
|
11 |
+
- gemma
|
12 |
+
- google
|
13 |
---
|
14 |
+
<div>
|
15 |
+
<p style="margin-bottom: 0; margin-top: 0;">
|
16 |
+
<strong>See <a href="https://huggingface.co/collections/unsloth/gemma-3-67d12b7e8816ec6efa7e4e5b">our collection</a> for all versions of Gemma 3 including GGUF, 4-bit & 16-bit formats.</strong>
|
17 |
+
</p>
|
18 |
+
<p style="margin-bottom: 0;">
|
19 |
+
<em>Unsloth's Gemma 3 <a href="https://unsloth.ai/blog/dynamic-4bit">Dynamic Quants</a> is selectively quantized, greatly improving accuracy over standard 4-bit.</em>
|
20 |
+
</p>
|
21 |
+
<div style="display: flex; gap: 5px; align-items: center; ">
|
22 |
+
<a href="https://github.com/unslothai/unsloth/">
|
23 |
+
<img src="https://github.com/unslothai/unsloth/raw/main/images/unsloth%20new%20logo.png" width="133">
|
24 |
+
</a>
|
25 |
+
<a href="https://discord.gg/unsloth">
|
26 |
+
<img src="https://github.com/unslothai/unsloth/raw/main/images/Discord%20button.png" width="173">
|
27 |
+
</a>
|
28 |
+
<a href="https://docs.unsloth.ai/basics/tutorial-how-to-run-deepseek-r1-on-your-own-local-device">
|
29 |
+
<img src="https://raw.githubusercontent.com/unslothai/unsloth/refs/heads/main/images/documentation%20green%20button.png" width="143">
|
30 |
+
</a>
|
31 |
+
</div>
|
32 |
+
<h1 style="margin-top: 0rem;">✨ Fine-tune Gemma 3 with Unsloth!</h1>
|
33 |
+
</div>
|
34 |
+
|
35 |
+
- Fine-tune Gemma 3 (12B) for free using our Google [Colab notebook here](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Gemma3.ipynb)!
|
36 |
+
- Read our Blog about Gemma 3 support: [unsloth.ai/blog/gemma3](https://unsloth.ai/blog/gemma3)
|
37 |
+
- View the rest of our notebooks in our [docs here](https://docs.unsloth.ai/get-started/unsloth-notebooks).
|
38 |
+
- Export your fine-tuned model to GGUF, Ollama, llama.cpp or 🤗HF.
|
39 |
+
|
40 |
+
| Unsloth supports | Free Notebooks | Performance | Memory use |
|
41 |
+
|-----------------|--------------------------------------------------------------------------------------------------------------------------|-------------|----------|
|
42 |
+
| **GRPO with Gemma 3 (12B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Gemma_3_(12B)-GRPO.ipynb) | 2x faster | 80% less |
|
43 |
+
| **Llama-3.2 (3B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3.2_(1B_and_3B)-Conversational.ipynb) | 2.4x faster | 58% less |
|
44 |
+
| **Llama-3.2 (11B vision)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3.2_(11B)-Vision.ipynb) | 2x faster | 60% less |
|
45 |
+
| **Qwen2.5 (7B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Qwen2.5_(7B)-Alpaca.ipynb) | 2x faster | 60% less |
|
46 |
+
| **Phi-4 (14B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Phi_4-Conversational.ipynb) | 2x faster | 50% less |
|
47 |
+
| **Mistral (7B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Mistral_v0.3_(7B)-Conversational.ipynb) | 2.2x faster | 62% less |
|
48 |
+
|
49 |
+
<br>
|
50 |
|
51 |
# Gemma 3 model card
|
52 |
|
|
|
96 |
question, analysis of image content, or a summary of a document
|
97 |
- Total output context of 8192 tokens
|
98 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
### Citation
|
100 |
|
101 |
```none
|