Update README.md
Browse files
README.md
CHANGED
@@ -1,199 +1,155 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
## Model Details
|
13 |
-
|
14 |
-
### Model Description
|
15 |
-
|
16 |
-
<!-- Provide a longer summary of what this model is. -->
|
17 |
-
|
18 |
-
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
-
|
20 |
-
- **Developed by:** [More Information Needed]
|
21 |
-
- **Funded by [optional]:** [More Information Needed]
|
22 |
-
- **Shared by [optional]:** [More Information Needed]
|
23 |
-
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
-
|
28 |
-
### Model Sources [optional]
|
29 |
-
|
30 |
-
<!-- Provide the basic links for the model. -->
|
31 |
-
|
32 |
-
- **Repository:** [More Information Needed]
|
33 |
-
- **Paper [optional]:** [More Information Needed]
|
34 |
-
- **Demo [optional]:** [More Information Needed]
|
35 |
-
|
36 |
-
## Uses
|
37 |
-
|
38 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
-
|
40 |
-
### Direct Use
|
41 |
-
|
42 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
-
|
44 |
-
[More Information Needed]
|
45 |
-
|
46 |
-
### Downstream Use [optional]
|
47 |
-
|
48 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
-
|
50 |
-
[More Information Needed]
|
51 |
-
|
52 |
-
### Out-of-Scope Use
|
53 |
-
|
54 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
-
|
56 |
-
[More Information Needed]
|
57 |
-
|
58 |
-
## Bias, Risks, and Limitations
|
59 |
-
|
60 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
-
|
62 |
-
[More Information Needed]
|
63 |
-
|
64 |
-
### Recommendations
|
65 |
-
|
66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
-
|
68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
-
|
70 |
-
## How to Get Started with the Model
|
71 |
-
|
72 |
-
Use the code below to get started with the model.
|
73 |
-
|
74 |
-
[More Information Needed]
|
75 |
-
|
76 |
-
## Training Details
|
77 |
-
|
78 |
-
### Training Data
|
79 |
-
|
80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
-
|
82 |
-
[More Information Needed]
|
83 |
-
|
84 |
-
### Training Procedure
|
85 |
-
|
86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
|
139 |
-
[
|
140 |
|
141 |
-
|
142 |
|
143 |
-
|
144 |
|
145 |
-
|
146 |
|
147 |
-
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
|
153 |
-
|
|
|
|
|
|
|
|
|
|
|
154 |
|
155 |
-
|
|
|
|
|
156 |
|
157 |
-
|
158 |
|
159 |
-
|
|
|
|
|
160 |
|
161 |
-
|
162 |
|
163 |
-
|
|
|
|
|
|
|
|
|
|
|
164 |
|
165 |
-
|
|
|
166 |
|
167 |
-
|
168 |
|
169 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
170 |
|
171 |
-
|
|
|
|
|
|
|
|
|
|
|
172 |
|
173 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
174 |
|
175 |
-
|
|
|
176 |
|
177 |
-
|
178 |
|
179 |
-
**
|
180 |
|
181 |
-
|
182 |
|
183 |
-
|
184 |
|
185 |
-
|
186 |
|
187 |
-
|
188 |
|
189 |
-
|
190 |
|
191 |
-
|
192 |
|
193 |
-
|
194 |
|
195 |
-
|
|
|
|
|
196 |
|
197 |
-
|
198 |
|
199 |
-
|
|
|
|
1 |
---
|
2 |
+
license: apache-2.0
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
pipeline_tag: text-to-speech
|
6 |
+
tags:
|
7 |
+
- model_hub_mixin
|
8 |
+
- pytorch_model_hub_mixin
|
9 |
+
- text-to-speech
|
10 |
+
base_model:
|
11 |
+
- sesame/csm-1b
|
12 |
---
|
13 |
+
<div>
|
14 |
+
<p style="margin-bottom: 0; margin-top: 0;">
|
15 |
+
<strong>See <a href="https://huggingface.co/collections/unsloth/text-to-speech-tts-models-68007ab12522e96be1e02155">our collection</a> for all our TTS model uploads.</strong>
|
16 |
+
</p>
|
17 |
+
<p style="margin-bottom: 0;">
|
18 |
+
<em>Learn to fine-tune TTS models - <a href="https://docs.unsloth.ai/basics/text-to-speech-tts-fine-tuning">Read our Guide</a>.</em>
|
19 |
+
</p>
|
20 |
+
<p style="margin-top: 0;margin-bottom: 0;">
|
21 |
+
<em><a href="https://docs.unsloth.ai/basics/unsloth-dynamic-v2.0-gguf">Unsloth Dynamic 2.0</a> achieves superior accuracy & outperforms other leading quants.</em>
|
22 |
+
</p>
|
23 |
+
<div style="display: flex; gap: 5px; align-items: center; ">
|
24 |
+
<a href="https://github.com/unslothai/unsloth/">
|
25 |
+
<img src="https://github.com/unslothai/unsloth/raw/main/images/unsloth%20new%20logo.png" width="133">
|
26 |
+
</a>
|
27 |
+
<a href="https://discord.gg/unsloth">
|
28 |
+
<img src="https://github.com/unslothai/unsloth/raw/main/images/Discord%20button.png" width="173">
|
29 |
+
</a>
|
30 |
+
<a href="https://docs.unsloth.ai/basics/text-to-speech-tts-fine-tuning">
|
31 |
+
<img src="https://raw.githubusercontent.com/unslothai/unsloth/refs/heads/main/images/documentation%20green%20button.png" width="143">
|
32 |
+
</a>
|
33 |
+
</div>
|
34 |
+
<h1 style="margin-top: 0rem;">✨ Run & Fine-tune TTS models with Unsloth!</h1>
|
35 |
+
</div>
|
36 |
+
|
37 |
+
- Fine-tune TTS models for free using our Google [Colab notebooks here](https://docs.unsloth.ai/get-started/unsloth-notebooks#text-to-speech-tts-notebooks)!
|
38 |
+
- Read our Blog about TTS support: [unsloth.ai/blog/tts](https://docs.unsloth.ai/basics/text-to-speech-tts-fine-tuning)
|
39 |
+
|
40 |
+
| Unsloth supports | Free Notebooks | Performance | Memory use |
|
41 |
+
|-----------------|--------------------------------------------------------------------------------------------------------------------------|-------------|----------|
|
42 |
+
| **Orpheus-TTS** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Orpheus_(3B)-TTS.ipynb) | 1.5x faster | 58% less |
|
43 |
+
| **Whisper Large V3** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Whisper.ipynb) | 1.5x faster | 50% less |
|
44 |
+
| **Qwen3 (14B)** | [▶️ Start on Colab](https://docs.unsloth.ai/get-started/unsloth-notebooks) | 2x faster | 70% less |
|
45 |
+
| **Llama 3.2 Vision (11B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3.2_(11B)-Vision.ipynb) | 1.8x faster | 50% less |
|
46 |
+
|
47 |
+
## CSM 1B
|
48 |
+
|
49 |
+
**2025/03/13** - We are releasing the 1B CSM variant. Code is available on GitHub: [SesameAILabs/csm](https://github.com/SesameAILabs/csm).
|
50 |
|
51 |
+
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
+
CSM (Conversational Speech Model) is a speech generation model from [Sesame](sesame.com) that generates RVQ audio codes from text and audio inputs. The model architecture employs a [Llama](https://www.llama.com/) backbone and a smaller audio decoder that produces [Mimi](https://huggingface.co/kyutai/mimi) audio codes.
|
54 |
|
55 |
+
A fine-tuned variant of CSM powers the [interactive voice demo](https://www.sesame.com/voicedemo) shown in our [blog post](https://www.sesame.com/research/crossing_the_uncanny_valley_of_voice).
|
56 |
|
57 |
+
A hosted [HuggingFace space](https://huggingface.co/spaces/sesame/csm-1b) is also available for testing audio generation.
|
58 |
|
59 |
+
## Usage
|
60 |
|
61 |
+
Setup the repo
|
|
|
|
|
|
|
|
|
62 |
|
63 |
+
```bash
|
64 |
+
git clone [email protected]:SesameAILabs/csm.git
|
65 |
+
cd csm
|
66 |
+
python3.10 -m venv .venv
|
67 |
+
source .venv/bin/activate
|
68 |
+
pip install -r requirements.txt
|
69 |
|
70 |
+
# You will need access to sesame/csm-1b and meta-llama/Llama-3.2-1B
|
71 |
+
huggingface-cli login
|
72 |
+
```
|
73 |
|
74 |
+
Generate a sentence
|
75 |
|
76 |
+
```python
|
77 |
+
from generator import load_csm_1b
|
78 |
+
import torchaudio
|
79 |
|
80 |
+
generator = load_csm_1b(device="cuda")
|
81 |
|
82 |
+
audio = generator.generate(
|
83 |
+
text="Hello from Sesame.",
|
84 |
+
speaker=0,
|
85 |
+
context=[],
|
86 |
+
max_audio_length_ms=10_000,
|
87 |
+
)
|
88 |
|
89 |
+
torchaudio.save("audio.wav", audio.unsqueeze(0).cpu(), generator.sample_rate)
|
90 |
+
```
|
91 |
|
92 |
+
CSM sounds best when provided with context. You can prompt or provide context to the model using a `Segment` for each speaker utterance.
|
93 |
|
94 |
+
```python
|
95 |
+
speakers = [0, 1, 0, 0]
|
96 |
+
transcripts = [
|
97 |
+
"Hey how are you doing.",
|
98 |
+
"Pretty good, pretty good.",
|
99 |
+
"I'm great.",
|
100 |
+
"So happy to be speaking to you.",
|
101 |
+
]
|
102 |
+
audio_paths = [
|
103 |
+
"utterance_0.wav",
|
104 |
+
"utterance_1.wav",
|
105 |
+
"utterance_2.wav",
|
106 |
+
"utterance_3.wav",
|
107 |
+
]
|
108 |
|
109 |
+
def load_audio(audio_path):
|
110 |
+
audio_tensor, sample_rate = torchaudio.load(audio_path)
|
111 |
+
audio_tensor = torchaudio.functional.resample(
|
112 |
+
audio_tensor.squeeze(0), orig_freq=sample_rate, new_freq=generator.sample_rate
|
113 |
+
)
|
114 |
+
return audio_tensor
|
115 |
|
116 |
+
segments = [
|
117 |
+
Segment(text=transcript, speaker=speaker, audio=load_audio(audio_path))
|
118 |
+
for transcript, speaker, audio_path in zip(transcripts, speakers, audio_paths)
|
119 |
+
]
|
120 |
+
audio = generator.generate(
|
121 |
+
text="Me too, this is some cool stuff huh?",
|
122 |
+
speaker=1,
|
123 |
+
context=segments,
|
124 |
+
max_audio_length_ms=10_000,
|
125 |
+
)
|
126 |
|
127 |
+
torchaudio.save("audio.wav", audio.unsqueeze(0).cpu(), generator.sample_rate)
|
128 |
+
```
|
129 |
|
130 |
+
## FAQ
|
131 |
|
132 |
+
**Does this model come with any voices?**
|
133 |
|
134 |
+
The model open sourced here is a base generation model. It is capable of producing a variety of voices, but it has not been fine-tuned on any specific voice.
|
135 |
|
136 |
+
**Can I converse with the model?**
|
137 |
|
138 |
+
CSM is trained to be an audio generation model and not a general purpose multimodal LLM. It cannot generate text. We suggest using a separate LLM for text generation.
|
139 |
|
140 |
+
**Does it support other languages?**
|
141 |
|
142 |
+
The model has some capacity for non-English languages due to data contamination in the training data, but it likely won't do well.
|
143 |
|
144 |
+
## Misuse and abuse ⚠️
|
145 |
|
146 |
+
This project provides a high-quality speech generation model for research and educational purposes. While we encourage responsible and ethical use, we **explicitly prohibit** the following:
|
147 |
|
148 |
+
- **Impersonation or Fraud**: Do not use this model to generate speech that mimics real individuals without their explicit consent.
|
149 |
+
- **Misinformation or Deception**: Do not use this model to create deceptive or misleading content, such as fake news or fraudulent calls.
|
150 |
+
- **Illegal or Harmful Activities**: Do not use this model for any illegal, harmful, or malicious purposes.
|
151 |
|
152 |
+
By using this model, you agree to comply with all applicable laws and ethical guidelines. We are **not responsible** for any misuse, and we strongly condemn unethical applications of this technology.
|
153 |
|
154 |
+
**Authors**
|
155 |
+
Johan Schalkwyk, Ankit Kumar, Dan Lyth, Sefik Emre Eskimez, Zack Hodari, Cinjon Resnick, Ramon Sanabria, Raven Jiang, and the Sesame team.
|