shimmyshimmer commited on
Commit
2d8672b
·
verified ·
1 Parent(s): 8f8260f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +123 -167
README.md CHANGED
@@ -1,199 +1,155 @@
1
  ---
2
- library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
4
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
 
139
- [More Information Needed]
140
 
141
- ## Environmental Impact
142
 
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
 
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
 
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
 
153
- ## Technical Specifications [optional]
 
 
 
 
 
154
 
155
- ### Model Architecture and Objective
 
 
156
 
157
- [More Information Needed]
158
 
159
- ### Compute Infrastructure
 
 
160
 
161
- [More Information Needed]
162
 
163
- #### Hardware
 
 
 
 
 
164
 
165
- [More Information Needed]
 
166
 
167
- #### Software
168
 
169
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
170
 
171
- ## Citation [optional]
 
 
 
 
 
172
 
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
 
 
 
 
 
 
 
 
 
174
 
175
- **BibTeX:**
 
176
 
177
- [More Information Needed]
178
 
179
- **APA:**
180
 
181
- [More Information Needed]
182
 
183
- ## Glossary [optional]
184
 
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
 
187
- [More Information Needed]
188
 
189
- ## More Information [optional]
190
 
191
- [More Information Needed]
192
 
193
- ## Model Card Authors [optional]
194
 
195
- [More Information Needed]
 
 
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
 
1
  ---
2
+ license: apache-2.0
3
+ language:
4
+ - en
5
+ pipeline_tag: text-to-speech
6
+ tags:
7
+ - model_hub_mixin
8
+ - pytorch_model_hub_mixin
9
+ - text-to-speech
10
+ base_model:
11
+ - sesame/csm-1b
12
  ---
13
+ <div>
14
+ <p style="margin-bottom: 0; margin-top: 0;">
15
+ <strong>See <a href="https://huggingface.co/collections/unsloth/text-to-speech-tts-models-68007ab12522e96be1e02155">our collection</a> for all our TTS model uploads.</strong>
16
+ </p>
17
+ <p style="margin-bottom: 0;">
18
+ <em>Learn to fine-tune TTS models - <a href="https://docs.unsloth.ai/basics/text-to-speech-tts-fine-tuning">Read our Guide</a>.</em>
19
+ </p>
20
+ <p style="margin-top: 0;margin-bottom: 0;">
21
+ <em><a href="https://docs.unsloth.ai/basics/unsloth-dynamic-v2.0-gguf">Unsloth Dynamic 2.0</a> achieves superior accuracy & outperforms other leading quants.</em>
22
+ </p>
23
+ <div style="display: flex; gap: 5px; align-items: center; ">
24
+ <a href="https://github.com/unslothai/unsloth/">
25
+ <img src="https://github.com/unslothai/unsloth/raw/main/images/unsloth%20new%20logo.png" width="133">
26
+ </a>
27
+ <a href="https://discord.gg/unsloth">
28
+ <img src="https://github.com/unslothai/unsloth/raw/main/images/Discord%20button.png" width="173">
29
+ </a>
30
+ <a href="https://docs.unsloth.ai/basics/text-to-speech-tts-fine-tuning">
31
+ <img src="https://raw.githubusercontent.com/unslothai/unsloth/refs/heads/main/images/documentation%20green%20button.png" width="143">
32
+ </a>
33
+ </div>
34
+ <h1 style="margin-top: 0rem;">✨ Run & Fine-tune TTS models with Unsloth!</h1>
35
+ </div>
36
+
37
+ - Fine-tune TTS models for free using our Google [Colab notebooks here](https://docs.unsloth.ai/get-started/unsloth-notebooks#text-to-speech-tts-notebooks)!
38
+ - Read our Blog about TTS support: [unsloth.ai/blog/tts](https://docs.unsloth.ai/basics/text-to-speech-tts-fine-tuning)
39
+
40
+ | Unsloth supports | Free Notebooks | Performance | Memory use |
41
+ |-----------------|--------------------------------------------------------------------------------------------------------------------------|-------------|----------|
42
+ | **Orpheus-TTS** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Orpheus_(3B)-TTS.ipynb) | 1.5x faster | 58% less |
43
+ | **Whisper Large V3** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Whisper.ipynb) | 1.5x faster | 50% less |
44
+ | **Qwen3 (14B)** | [▶️ Start on Colab](https://docs.unsloth.ai/get-started/unsloth-notebooks) | 2x faster | 70% less |
45
+ | **Llama 3.2 Vision (11B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3.2_(11B)-Vision.ipynb) | 1.8x faster | 50% less |
46
+
47
+ ## CSM 1B
48
+
49
+ **2025/03/13** - We are releasing the 1B CSM variant. Code is available on GitHub: [SesameAILabs/csm](https://github.com/SesameAILabs/csm).
50
 
51
+ ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52
 
53
+ CSM (Conversational Speech Model) is a speech generation model from [Sesame](sesame.com) that generates RVQ audio codes from text and audio inputs. The model architecture employs a [Llama](https://www.llama.com/) backbone and a smaller audio decoder that produces [Mimi](https://huggingface.co/kyutai/mimi) audio codes.
54
 
55
+ A fine-tuned variant of CSM powers the [interactive voice demo](https://www.sesame.com/voicedemo) shown in our [blog post](https://www.sesame.com/research/crossing_the_uncanny_valley_of_voice).
56
 
57
+ A hosted [HuggingFace space](https://huggingface.co/spaces/sesame/csm-1b) is also available for testing audio generation.
58
 
59
+ ## Usage
60
 
61
+ Setup the repo
 
 
 
 
62
 
63
+ ```bash
64
+ git clone [email protected]:SesameAILabs/csm.git
65
+ cd csm
66
+ python3.10 -m venv .venv
67
+ source .venv/bin/activate
68
+ pip install -r requirements.txt
69
 
70
+ # You will need access to sesame/csm-1b and meta-llama/Llama-3.2-1B
71
+ huggingface-cli login
72
+ ```
73
 
74
+ Generate a sentence
75
 
76
+ ```python
77
+ from generator import load_csm_1b
78
+ import torchaudio
79
 
80
+ generator = load_csm_1b(device="cuda")
81
 
82
+ audio = generator.generate(
83
+ text="Hello from Sesame.",
84
+ speaker=0,
85
+ context=[],
86
+ max_audio_length_ms=10_000,
87
+ )
88
 
89
+ torchaudio.save("audio.wav", audio.unsqueeze(0).cpu(), generator.sample_rate)
90
+ ```
91
 
92
+ CSM sounds best when provided with context. You can prompt or provide context to the model using a `Segment` for each speaker utterance.
93
 
94
+ ```python
95
+ speakers = [0, 1, 0, 0]
96
+ transcripts = [
97
+ "Hey how are you doing.",
98
+ "Pretty good, pretty good.",
99
+ "I'm great.",
100
+ "So happy to be speaking to you.",
101
+ ]
102
+ audio_paths = [
103
+ "utterance_0.wav",
104
+ "utterance_1.wav",
105
+ "utterance_2.wav",
106
+ "utterance_3.wav",
107
+ ]
108
 
109
+ def load_audio(audio_path):
110
+ audio_tensor, sample_rate = torchaudio.load(audio_path)
111
+ audio_tensor = torchaudio.functional.resample(
112
+ audio_tensor.squeeze(0), orig_freq=sample_rate, new_freq=generator.sample_rate
113
+ )
114
+ return audio_tensor
115
 
116
+ segments = [
117
+ Segment(text=transcript, speaker=speaker, audio=load_audio(audio_path))
118
+ for transcript, speaker, audio_path in zip(transcripts, speakers, audio_paths)
119
+ ]
120
+ audio = generator.generate(
121
+ text="Me too, this is some cool stuff huh?",
122
+ speaker=1,
123
+ context=segments,
124
+ max_audio_length_ms=10_000,
125
+ )
126
 
127
+ torchaudio.save("audio.wav", audio.unsqueeze(0).cpu(), generator.sample_rate)
128
+ ```
129
 
130
+ ## FAQ
131
 
132
+ **Does this model come with any voices?**
133
 
134
+ The model open sourced here is a base generation model. It is capable of producing a variety of voices, but it has not been fine-tuned on any specific voice.
135
 
136
+ **Can I converse with the model?**
137
 
138
+ CSM is trained to be an audio generation model and not a general purpose multimodal LLM. It cannot generate text. We suggest using a separate LLM for text generation.
139
 
140
+ **Does it support other languages?**
141
 
142
+ The model has some capacity for non-English languages due to data contamination in the training data, but it likely won't do well.
143
 
144
+ ## Misuse and abuse ⚠️
145
 
146
+ This project provides a high-quality speech generation model for research and educational purposes. While we encourage responsible and ethical use, we **explicitly prohibit** the following:
147
 
148
+ - **Impersonation or Fraud**: Do not use this model to generate speech that mimics real individuals without their explicit consent.
149
+ - **Misinformation or Deception**: Do not use this model to create deceptive or misleading content, such as fake news or fraudulent calls.
150
+ - **Illegal or Harmful Activities**: Do not use this model for any illegal, harmful, or malicious purposes.
151
 
152
+ By using this model, you agree to comply with all applicable laws and ethical guidelines. We are **not responsible** for any misuse, and we strongly condemn unethical applications of this technology.
153
 
154
+ **Authors**
155
+ Johan Schalkwyk, Ankit Kumar, Dan Lyth, Sefik Emre Eskimez, Zack Hodari, Cinjon Resnick, Ramon Sanabria, Raven Jiang, and the Sesame team.