File size: 6,802 Bytes
861e510 b32d857 81de500 51ed388 1630c51 81de500 1630c51 b41fe52 d70d0f5 b32d857 81de500 b32d857 81de500 b32d857 81de500 51ed388 b32d857 b41fe52 d70d0f5 07b624f d70d0f5 b32d857 81de500 51ed388 81de500 b32d857 81de500 b32d857 81de500 e1650ed d79571a e1650ed d79571a 5d07ae0 87fc54a 5d07ae0 81de500 b32d857 ce5e53f 60ae85e ce5e53f b32d857 ce5e53f 60ae85e ce5e53f b32d857 81de500 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 |
---
license: mit
language:
- en
- ko
metrics:
- accuracy
base_model:
- meta-llama/Llama-3.1-8B-Instruct
library_name: transformers
tags:
- medical
- healthcare
---
# LLaMA 3.1 8B Instruct - Healthcare Fine-tuned Model
This is a model that fine-tuned the Llama-3.1-8B-Instruct model from Unidocs using Healthcare data.<br>
μ λλ₯μ€(μ£Ό)μμ Llama-3.1-8B-Instruct λͺ¨λΈμ Healthcare λ°μ΄ν°λ‘ λ―ΈμΈμ‘°μ ν λͺ¨λΈμ <br>
## Model Description
sLLM model used in Unidoc's ezMyAIDoctor, released on October 16, 2024 as a result of the AIDC-HPC project <br>
of the Artificial Intelligence Industry Convergence Business Group (AICA) <br>
meta-llama/Llama-3.1-8B-Instruct wiki, kowiki, super-large AI healthcare question-answer data, <br>
A model that has been pretrained (Full Finetuning) by referring to the super-large AI corpus with improved Korean performance, <br>
and the medical and legal professional book corpus.
μ λλ₯μ€(μ£Ό)μ ezMyAIDoctorμμ μ¬μ©λλ sLLM λͺ¨λΈλ‘ μΈκ³΅μ§λ₯μ°μ
μ΅ν©μ¬μ
λ¨(AICA)μ AIDC-HPC μ¬μ
μ κ²°κ³Όλ‘ 2024λ
10μ 16μΌ κ³΅κ°ν¨<br>
meta-llama/Llama-3.1-8B-Instructμ wiki, kowiki, AIHub(aihub.or.kr)μ (μ΄κ±°λAI ν¬μ€μΌμ΄ μ§μμλ΅λ°μ΄ν°,
νκ΅μ΄ μ±λ₯μ΄ κ°μ λ μ΄κ±°λ AI λ§λμΉ, μλ£/λ²λ₯ μ λ¬Έμμ λ§λμΉ)λ₯Ό μ°Έκ³ νμ¬ Pretrain(Full Finetuning)λ λͺ¨λΈμ
## Intended Uses & Limitations
The model is designed to assist with healthcare-related queries and tasks. <br>
However, it should not be used as a substitute for professional medical advice, diagnosis, or treatment.<br>
Always consult with a qualified healthcare provider for medical concerns.
μ΄ λͺ¨λΈμ Healthcare κ΄λ ¨ μ§μ λ° μμ
μ μ§μνλλ‘ μ€κ³λμμ΅λλ€. <br>
κ·Έλ¬λ μ λ¬Έμ μΈ μνμ μ‘°μΈ, μ§λ¨ λλ μΉλ£λ₯Ό λ체νλ λ° μ¬μ©λμ΄μλ μ λ©λλ€. <br>
μλ£ κ΄λ ¨ λ¬Έμ λ νμ μ격μ κ°μΆ μλ£ μλΉμ€ μ 곡μμ μμνμμμ€.
## Training Data
The model was fine-tuned on a proprietary healthcare dataset. <br>
Due to privacy concerns, details of the dataset cannot be disclosed.<br>
wiki, kowiki λ°μ΄ν° μ΄μΈ<br>
κ³ΌνκΈ°μ μ 보ν΅μ λΆ, νκ΅μ§λ₯μ 보μ¬νμ§ν₯μμμ κ΄λ¦¬νκ³ μλ AIHubμ <br>
- μ΄κ±°λAI ν¬μ€μΌμ΄ μ§μμλ΅λ°μ΄ν°
- νκ΅μ΄ μ±λ₯μ΄ κ°μ λ μ΄κ±°λ AI λ§λμΉ
- μλ£, λ²λ₯ μ λ¬Έμμ λ§λμΉ
<br> λ±μ νμ©ν¨
## Training Procedure
Full fine-tuning was performed on the base LLaMA 3.1 8B Instruct model using the healthcare dataset.<br>
Healthcare λ°μ΄ν° μΈνΈλ₯Ό μ¬μ©νμ¬ κΈ°λ³Έ LLaMA 3.1 8B Instruct λͺ¨λΈμμ μ 체 λ―ΈμΈ μ‘°μ μ μννμ΅λλ€.
## Evaluation Results
Accuracy by category of mmlu benchmark<br>
|category| Accuracy|
|-------------------|--------------|
|anatomy | 0.68 (92/135)|
|clinical_knowledge | 0.75 (200/265)|
|college_medicine | 0.68 (117/173)|
|medical_genetics | 0.70 (70/100)|
|professional_medicine | 0.76 (208/272)|
All Accuracy Mean value: 0.72
### Use with transformers
Starting with `transformers >= 4.43.1` onward, you can run conversational inference using the Transformers `pipeline` abstraction or by leveraging the Auto classes with the `generate()` function.
Make sure to update your transformers installation via `pip install --upgrade transformers`.
```python
import transformers
import torch
model_id = "unidocs/llama-3.1-8b-komedic-instruct"
pipeline = transformers.pipeline(
"text-generation",
model=model_id,
model_kwargs={"torch_dtype": torch.bfloat16},
device_map="auto",
)
messages = [
{"role": "system", "content": "λΉμ μ μλ£μ λ¬Έκ°μ
λλ€. μ§λ³μ μ μ, μμΈ, μ¦μ, κ²μ§, μ§λ¨, μΉλ£, μ½λ¬Ό, μμ΄, μν μΈ‘λ©΄μμ λ΅λ³ν΄ μ£ΌμΈμ"},
{"role": "user", "content": "곡볡νλΉμ΄ 120μ΄μμΈ κ²½μ° μ 1ν λΉλ¨μ μ 2ν λΉλ¨ νμλ κ°κ° μ΄λ»κ² μΉλ£λ₯Ό λ°μμΌ νλμ?"},
]
outputs = pipeline(
messages,
max_new_tokens=256,
)
print(outputs[0]["generated_text"][-1])
```
Note: You can also find detailed recipes on how to use the model locally, with `torch.compile()`, assisted generations, quantised and more at [`huggingface-llama-recipes`](https://github.com/huggingface/huggingface-llama-recipes)
## Limitations and Bias
- This model may produce biased or inaccurate results. It should not be solely relied upon for critical healthcare decisions.
- The model's knowledge is limited to its training data and cut-off date.
- It may exhibit biases present in the training data.
- The model may occasionally produce incorrect or inconsistent information.
- λͺ¨λΈμ μ§μμ νλ ¨ λ°μ΄ν°μ λ§κ°μΌλ‘ μ νλ©λλ€.
- νλ ¨ λ°μ΄ν°μ νΈν₯μ΄ μμ μ μμ΅λλ€.
- λͺ¨λΈμ κ°λ μλͺ»λκ±°λ μΌκ΄λμ§ μμ μ 보λ₯Ό μμ±ν μ μμ΅λλ€.
- μ΄ λͺ¨λΈμ νΈν₯λκ±°λ λΆμ νν κ²°κ³Όλ₯Ό μμ±ν μ μμ΅λλ€. μ€μν μλ£ κ²°μ μ μ΄ λͺ¨λΈμλ§ μμ‘΄ν΄μλ μ λ©λλ€.
## Legal Disclaimer
The model developers and distributors bear no legal responsibility for any consequences arising from the use of this model. <br>
This includes any direct, indirect, incidental, special, punitive, or consequential damages resulting from the model's output.<br>
By using this model, users assume all risks that may arise, and the responsibility for verifying and appropriately using the model's output lies solely with the user.<br>
This model cannot substitute for medical advice, diagnosis, or treatment, and qualified healthcare professionals should always be consulted for medical decisions.<br>
This disclaimer applies to the maximum extent permitted by applicable law.
## λ²μ μ±
μ λ©΄μ±
μ‘°ν
λ³Έ λͺ¨λΈμ μ¬μ©μΌλ‘ μΈν΄ λ°μνλ λͺ¨λ κ²°κ³Όμ λν΄ λͺ¨λΈ κ°λ°μ λ° λ°°ν¬μλ μ΄λ ν λ²μ μ±
μλ μ§μ§ μμ΅λλ€. <br>
μ΄λ λͺ¨λΈμ μΆλ ₯μΌλ‘ μΈν μ§μ μ , κ°μ μ , μ°λ°μ , νΉμν, μ§λ²μ λλ κ²°κ³Όμ μν΄λ₯Ό ν¬ν¨ν©λλ€.<br>
μ¬μ©μλ λ³Έ λͺ¨λΈμ μ¬μ©ν¨μΌλ‘μ¨ λ°μν μ μλ λͺ¨λ μνμ κ°μνλ©°, λͺ¨λΈμ μΆλ ₯μ λν κ²μ¦ λ° μ μ ν μ¬μ©μ λν μ±
μμ μ μ μΌλ‘ μ¬μ©μμκ² μμ΅λλ€.<br>
λ³Έ λͺ¨λΈμ μνμ μ‘°μΈ, μ§λ¨, λλ μΉλ£λ₯Ό λ체ν μ μμΌλ©°, μλ£ κ΄λ ¨ κ²°μ μ λ΄λ¦΄ λλ λ°λμ μ격μ κ°μΆ μλ£ μ λ¬Έκ°μ μλ΄ν΄μΌ ν©λλ€.<br>
μ΄ λ©΄μ±
μ‘°νμ κ΄λ ¨ λ²λ₯ μ΄ νμ©νλ μ΅λ λ²μ λ΄μμ μ μ©λ©λλ€.
## Model Card Contact
μ μ ([email protected]), κΉμ§μ€([email protected])
## Additional Information
For more details about the base model, please refer to the original LLaMA 3.1 documentation.
|