Text Generation
Transformers
PyTorch
Safetensors
English
rwkv
finance
Inference Endpoints
umuthopeyildirim commited on
Commit
330ac21
·
verified ·
1 Parent(s): 9bea36c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +23 -0
README.md CHANGED
@@ -29,6 +29,29 @@ Fin-RWKV is a cutting-edge, attention-free model designed specifically for finan
29
  - Finance-Specific Training: Trained on the gbharti/finance-alpaca dataset, ensuring that the model is finely tuned for financial data analysis.
30
  - Transformers Library Integration: Built on the popular 'transformers' library, ensuring easy integration with existing ML pipelines and applications.
31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32
  ## Competing Against
33
  | Name | Param Count | Cost | Inference Cost |
34
  |---------------|-------------|------|----------------|
 
29
  - Finance-Specific Training: Trained on the gbharti/finance-alpaca dataset, ensuring that the model is finely tuned for financial data analysis.
30
  - Transformers Library Integration: Built on the popular 'transformers' library, ensuring easy integration with existing ML pipelines and applications.
31
 
32
+ ## How to use
33
+ ```py
34
+ from transformers import AutoTokenizer, AutoModelForCausalLM, StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer
35
+ from threading import Thread
36
+ import torch
37
+
38
+ tokenizer = AutoTokenizer.from_pretrained("umuthopeyildirim/fin-rwkv-1b5")
39
+ model = AutoModelForCausalLM.from_pretrained("umuthopeyildirim/fin-rwkv-1b5")
40
+
41
+ prompt = "user: Is this headline positive or negative? Headline: Australian Tycoon Forrest Shuts Nickel Mines After Prices Crash\nbot:"
42
+
43
+ # Tokenize the input
44
+ input_ids = tokenizer.encode(prompt, return_tensors="pt")
45
+
46
+ # Generate a response
47
+ output = model.generate(input_ids, max_length=333, num_return_sequences=1)
48
+
49
+ # Decode the output
50
+ generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
51
+
52
+ print(generated_text)
53
+ ```
54
+
55
  ## Competing Against
56
  | Name | Param Count | Cost | Inference Cost |
57
  |---------------|-------------|------|----------------|