File size: 2,832 Bytes
a2e05e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae3d0a7
 
 
 
 
a2e05e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a515321
7bc83ed
722c186
 
efd0ffe
b1f929b
57d7fce
c17efc7
dcf0a06
273c8e2
ae3d0a7
a2e05e2
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
library_name: transformers
license: mit
base_model: dbmdz/bert-base-turkish-cased
tags:
- generated_from_keras_callback
model-index:
- name: umutarpayy/bert_matematik_6
  results: []
---

<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->

# umutarpayy/bert_matematik_6

This model is a fine-tuned version of [dbmdz/bert-base-turkish-cased](https://huggingface.co/dbmdz/bert-base-turkish-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.2283
- Train Accuracy: 0.9475
- Validation Loss: 0.1557
- Validation Accuracy: 0.9614
- Epoch: 11

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 9300, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32

### Training results

| Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
|:----------:|:--------------:|:---------------:|:-------------------:|:-----:|
| 3.0220     | 0.2760         | 1.7334          | 0.5717              | 0     |
| 1.5144     | 0.5985         | 1.1455          | 0.6699              | 1     |
| 1.1069     | 0.6872         | 0.8943          | 0.7295              | 2     |
| 0.8911     | 0.7434         | 0.6902          | 0.7931              | 3     |
| 0.7160     | 0.7937         | 0.5481          | 0.8486              | 4     |
| 0.5892     | 0.8327         | 0.4402          | 0.8744              | 5     |
| 0.4838     | 0.8665         | 0.3478          | 0.9010              | 6     |
| 0.4034     | 0.8944         | 0.2653          | 0.9300              | 7     |
| 0.3421     | 0.9069         | 0.2125          | 0.9436              | 8     |
| 0.2890     | 0.9263         | 0.1814          | 0.9549              | 9     |
| 0.2487     | 0.9384         | 0.1629          | 0.9589              | 10    |
| 0.2283     | 0.9475         | 0.1557          | 0.9614              | 11    |


### Framework versions

- Transformers 4.47.1
- TensorFlow 2.17.1
- Datasets 3.2.0
- Tokenizers 0.21.0