File size: 5,874 Bytes
c1da662 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 |
# -*- coding: utf-8 -*-
"""ResNet50.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1Ztagc2mpxc2YEeFMut7EwFhL8SFY2gAm
"""
import numpy as np
import pandas as pd
from PIL import Image
import pickle
from sklearn.utils import shuffle
from sklearn.model_selection import train_test_split
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
import os
from tensorflow.keras.applications import ResNet50
from tensorflow.keras.applications.resnet50 import preprocess_input
datagen = ImageDataGenerator(rescale=1.0/255.0, rotation_range=20, width_shift_range=0.2, height_shift_range=0.2, shear_range=0.2, zoom_range=0.2, horizontal_flip=True, fill_mode='nearest')
batch_size = 20
train_data_dir = '/content/drive/MyDrive/BoneFractureDataset/training'
validation_data_dir = '/content/drive/MyDrive/BoneFractureDataset/testing'
train_generator = datagen.flow_from_directory( train_data_dir,
target_size=(224, 224),
batch_size=batch_size,
class_mode='binary',
shuffle=True )
validation_generator = datagen.flow_from_directory(
validation_data_dir,
target_size=(224, 224),
batch_size=batch_size,
class_mode='binary',
shuffle=False
)
!ls /kaggle/input/resnet50-weights/
!stat /kaggle/input/resnet50-weights/resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5
!wget https://storage.googleapis.com/tensorflow/keras-applications/resnet/resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5 -P /kaggle/input/resnet50-weights/
!cat /kaggle/input/resnet50-weights/resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5
!ls -l /kaggle/input/resnet50-weights/resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5
!wget https://storage.googleapis.com/tensorflow/keras-applications/resnet/resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5 -P /kaggle/input/resnet50-weights
resModel = Sequential()
resModel.add(ResNet50(
include_top=False,
pooling='avg',
weights=None,
))
resModel.add(Dense(1, activation='sigmoid'))
for layer in resModel.layers[0].layers[-50:]:
layer.trainable = True
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.callbacks import ReduceLROnPlateau
optimizer = Adam(learning_rate=0.001)
reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.2, patience=3, min_lr=0.0001)
resModel.compile(optimizer=optimizer, loss='binary_crossentropy', metrics=['accuracy'])
epochs = 10
history = resModel.fit(train_generator, epochs=epochs, validation_data=validation_generator, callbacks=[reduce_lr])
evaluation = resModel.evaluate(train_generator)
print(f"Test Accuracy: {evaluation[1] * 100:.2f}%")
initial_epoch = 0
saved_history = {
'loss': history.history['loss'],
'accuracy': history.history['accuracy'],
'val_loss': history.history['val_loss'],
'val_accuracy': history.history['val_accuracy'],
}
import matplotlib.pyplot as plt
from matplotlib.lines import Line2D
from matplotlib.legend_handler import HandlerLine2D
import numpy as np
initial_epoch = 10
saved_history = {
'loss': history.history['loss'],
'accuracy': history.history['accuracy'],
'val_loss': history.history['val_loss'],
'val_accuracy': history.history['val_accuracy'],
}
!ls /kaggle/working
!ls -l /kaggle/working/saved_D201history.npy
!find / -name saved_D201history.npy
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, log_loss, jaccard_score
true_classes = [1, 0, 1, 1, 0]
predicted_classes = [1, 1, 0, 1, 0]
print(f"Accuracy: {accuracy_score(true_classes, predicted_classes)}")
print(f"Precision: {precision_score(true_classes, predicted_classes)}")
print(f"Recall: {recall_score(true_classes, predicted_classes)}")
print(f"F1 Score: {f1_score(true_classes, predicted_classes)}")
print(f"Log Loss: {log_loss(true_classes, predicted_classes)}")
print(f"Jaccard Score: {jaccard_score(true_classes, predicted_classes)}")
from sklearn.metrics import classification_report
print("\nClassification Report:")
print(classification_report(true_classes, predicted_classes,digits=4))
from sklearn.metrics import roc_curve, roc_auc_score
import matplotlib.pyplot as plt
from matplotlib.patches import Patch
def save_and_display_gradcam(img_path, heatmap, alpha=0.7):
img = cv2.imread(img_path)
img = cv2.resize(img, (299, 299))
heatmap = cv2.resize(heatmap, (img.shape[1], img.shape[0]))
heatmap = np.uint8(255 * heatmap)
heatmap = cv2.applyColorMap(heatmap, cv2.COLORMAP_PLASMA)
superimposed_img = cv2.addWeighted(heatmap, alpha, img, 1 - alpha, 0)
plt.figure(figsize=(4, 4))
plt.imshow(cv2.cvtColor(superimposed_img, cv2.COLOR_BGR2RGB))
plt.title('GradCAM', fontdict={'family': 'Serif', 'weight': 'bold', 'size': 12})
plt.axis('off')
plt.tight_layout()
plt.show()
def make_gradcam_heatmap(img_array, model, last_conv_layer_name, pred_index=None):
model.layers[-1].activation = None
grad_model = tf.keras.models.Model(
[model.inputs], [model.get_layer(last_conv_layer_name).output, model.output]
)
with tf.GradientTape() as tape:
last_conv_layer_output, preds = grad_model(img_array)
if pred_index is None:
pred_index = tf.argmax(preds[0])
class_channel = preds[:, pred_index]
grads = tape.gradient(class_channel, last_conv_layer_output)
pooled_grads = tf.reduce_mean(grads, axis=(0, 1, 2))
last_conv_layer_output = last_conv_layer_output[0]
heatmap = last_conv_layer_output @ pooled_grads[..., tf.newaxis]
heatmap = tf.squeeze(heatmap)
heatmap = tf.maximum(heatmap, 0) / tf.math.reduce_max(heatmap)
return heatmap.numpy()
import cv2
abcd = cv2.imread('/content/drive/MyDrive/BoneFractureDataset/testing/fractured/3.jpg')
plt.imshow(abcd) |