Update README.md
Browse files
README.md
CHANGED
@@ -1 +1,43 @@
|
|
1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: zh
|
3 |
+
datasets: cluecorpus
|
4 |
+
---
|
5 |
+
|
6 |
+
# BERT Miniatures
|
7 |
+
|
8 |
+
## Model description
|
9 |
+
|
10 |
+
This is the set of 24 Chinese RoBERTa models pre-trained by [UER-py](https://www.aclweb.org/anthology/D19-3041.pdf).
|
11 |
+
|
12 |
+
You can download the 24 Chinese RoBERTa miniatures either from the [UER-py Github page](https://github.com/dbiir/UER-py/), or via HuggingFace from the links below:
|
13 |
+
|
14 |
+
| |H=128|H=256|H=512|H=768|
|
15 |
+
|---|:---:|:---:|:---:|:---:|
|
16 |
+
| **L=2** |[**2/128 (BERT-Tiny)**][2_128]|[2/256]|[2/512]|[2/768]|
|
17 |
+
| **L=4** |[4/128]|[**4/256 (BERT-Mini)**]|[**4/512 (BERT-Small)**]|[4/768]|
|
18 |
+
| **L=6** |[6/128]|[6/256]|[6/512]|[6/768]|
|
19 |
+
| **L=8** |[8/128]|[8/256]|[**8/512 (BERT-Medium)**]|[8/768]|
|
20 |
+
| **L=10** |[10/128]|[10/256]|[10/512]|[10/768]|
|
21 |
+
| **L=12** |[12/128]|[12/256]|[12/512]|[**12/768 (BERT-Base)**]|
|
22 |
+
|
23 |
+
## Training data
|
24 |
+
|
25 |
+
CLUECorpus2020 and CLUECorpusSmall are used as training corpus.
|
26 |
+
|
27 |
+
## Training procedure
|
28 |
+
|
29 |
+
Training details can be found in [UER-py](https://github.com/dbiir/UER-py/).
|
30 |
+
|
31 |
+
### BibTeX entry and citation info
|
32 |
+
|
33 |
+
```
|
34 |
+
@article{zhao2019uer,
|
35 |
+
title={UER: An Open-Source Toolkit for Pre-training Models},
|
36 |
+
author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong},
|
37 |
+
journal={EMNLP-IJCNLP 2019},
|
38 |
+
pages={241},
|
39 |
+
year={2019}
|
40 |
+
}
|
41 |
+
```
|
42 |
+
|
43 |
+
[2_128]: https://huggingface.co/uer/chinese_roberta_L-2_H-128
|