--- base_model: meta-llama/Meta-Llama-3-8B datasets: - yihanwang617/WizardLM_70k_processed_indicator_4k library_name: peft license: llama3 tags: - alignment-handbook - trl - sft - generated_from_trainer model-index: - name: llama-3-qlora-wizard-processed-indicator-0.6 results: [] --- # llama-3-qlora-wizard-processed-indicator-0.6 This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) on the yihanwang617/WizardLM_70k_processed_indicator_4k dataset. It achieves the following results on the evaluation set: - Loss: 0.6735 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.7109 | 0.1842 | 200 | 0.7065 | | 0.7185 | 0.3683 | 400 | 0.6904 | | 0.7062 | 0.5525 | 600 | 0.6819 | | 0.6629 | 0.7366 | 800 | 0.6758 | | 0.6769 | 0.9208 | 1000 | 0.6736 | ### Framework versions - PEFT 0.12.0 - Transformers 4.40.1 - Pytorch 2.4.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1