diff --git "a/base/ggml-base-encoder-openvino.xml" "b/base/ggml-base-encoder-openvino.xml" new file mode 100644--- /dev/null +++ "b/base/ggml-base-encoder-openvino.xml" @@ -0,0 +1,9131 @@ +<?xml version="1.0"?> +<net name="main_graph" version="11"> + <layers> + <layer id="0" name="mel" type="Parameter" version="opset1"> + <data shape="1,80,3000" element_type="f32" /> + <output> + <port id="0" precision="FP32" names="mel"> + <dim>1</dim> + <dim>80</dim> + <dim>3000</dim> + </port> + </output> + </layer> + <layer id="1" name="onnx::Conv_740" type="Const" version="opset1"> + <data element_type="f32" shape="512, 80, 3" offset="0" size="491520" /> + <output> + <port id="0" precision="FP32" names="onnx::Conv_740"> + <dim>512</dim> + <dim>80</dim> + <dim>3</dim> + </port> + </output> + </layer> + <layer id="2" name="/conv1/Conv/WithoutBiases" type="Convolution" version="opset1"> + <data strides="1" dilations="1" pads_begin="1" pads_end="1" auto_pad="explicit" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>80</dim> + <dim>3000</dim> + </port> + <port id="1" precision="FP32"> + <dim>512</dim> + <dim>80</dim> + <dim>3</dim> + </port> + </input> + <output> + <port id="2" precision="FP32"> + <dim>1</dim> + <dim>512</dim> + <dim>3000</dim> + </port> + </output> + </layer> + <layer id="3" name="onnx::Conv_741" type="Const" version="opset1"> + <data element_type="f32" shape="512" offset="491520" size="2048" /> + <output> + <port id="0" precision="FP32" names="onnx::Conv_741"> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="4" name="Constant_102" type="Const" version="opset1"> + <data element_type="i64" shape="1" offset="493568" size="8" /> + <output> + <port id="0" precision="I64"> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="5" name="ShapeOf_109" type="ShapeOf" version="opset3"> + <data output_type="i64" /> + <input> + <port id="0" precision="FP32"> + <dim>512</dim> + </port> + </input> + <output> + <port id="1" precision="I64"> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="6" name="ShapeOf_100" type="ShapeOf" version="opset3"> + <data output_type="i64" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>512</dim> + <dim>3000</dim> + </port> + </input> + <output> + <port id="1" precision="I64"> + <dim>3</dim> + </port> + </output> + </layer> + <layer id="7" name="ShapeOf_101" type="ShapeOf" version="opset3"> + <data output_type="i64" /> + <input> + <port id="0" precision="I64"> + <dim>3</dim> + </port> + </input> + <output> + <port id="1" precision="I64"> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="8" name="Constant_103" type="Const" version="opset1"> + <data element_type="i64" shape="1" offset="493576" size="8" /> + <output> + <port id="0" precision="I64"> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="9" name="Subtract_104" type="Subtract" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="I64"> + <dim>1</dim> + </port> + <port id="1" precision="I64"> + <dim>1</dim> + </port> + </input> + <output> + <port id="2" precision="I64"> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="10" name="Broadcast_105" type="Broadcast" version="opset3"> + <data mode="numpy" /> + <input> + <port id="0" precision="I64"> + <dim>1</dim> + </port> + <port id="1" precision="I64"> + <dim>1</dim> + </port> + </input> + <output> + <port id="2" precision="I64"> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="11" name="Concat_110" type="Concat" version="opset1"> + <data axis="0" /> + <input> + <port id="0" precision="I64"> + <dim>1</dim> + </port> + <port id="1" precision="I64"> + <dim>1</dim> + </port> + <port id="2" precision="I64"> + <dim>1</dim> + </port> + </input> + <output> + <port id="3" precision="I64"> + <dim>3</dim> + </port> + </output> + </layer> + <layer id="12" name="Reshape_111" type="Reshape" version="opset1"> + <data special_zero="false" /> + <input> + <port id="0" precision="FP32"> + <dim>512</dim> + </port> + <port id="1" precision="I64"> + <dim>3</dim> + </port> + </input> + <output> + <port id="2" precision="FP32"> + <dim>1</dim> + <dim>512</dim> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="13" name="/conv1/Conv" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>512</dim> + <dim>3000</dim> + </port> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>512</dim> + <dim>1</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/conv1/Conv_output_0"> + <dim>1</dim> + <dim>512</dim> + <dim>3000</dim> + </port> + </output> + </layer> + <layer id="14" name="/Constant" type="Const" version="opset1"> + <data element_type="f32" shape="" offset="493584" size="4" /> + <output> + <port id="0" precision="FP32" names="/Constant_output_0" /> + </output> + </layer> + <layer id="15" name="/Div" type="Divide" version="opset1"> + <data auto_broadcast="numpy" m_pythondiv="true" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>512</dim> + <dim>3000</dim> + </port> + <port id="1" precision="FP32" /> + </input> + <output> + <port id="2" precision="FP32" names="/Div_output_0"> + <dim>1</dim> + <dim>512</dim> + <dim>3000</dim> + </port> + </output> + </layer> + <layer id="16" name="/Erf" type="Erf" version="opset1"> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>512</dim> + <dim>3000</dim> + </port> + </input> + <output> + <port id="1" precision="FP32" names="/Erf_output_0"> + <dim>1</dim> + <dim>512</dim> + <dim>3000</dim> + </port> + </output> + </layer> + <layer id="17" name="/Constant_1" type="Const" version="opset1"> + <data element_type="f32" shape="" offset="493588" size="4" /> + <output> + <port id="0" precision="FP32" names="/Constant_1_output_0" /> + </output> + </layer> + <layer id="18" name="/Add" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>512</dim> + <dim>3000</dim> + </port> + <port id="1" precision="FP32" /> + </input> + <output> + <port id="2" precision="FP32" names="/Add_output_0"> + <dim>1</dim> + <dim>512</dim> + <dim>3000</dim> + </port> + </output> + </layer> + <layer id="19" name="/Mul" type="Multiply" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>512</dim> + <dim>3000</dim> + </port> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>512</dim> + <dim>3000</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/Mul_output_0"> + <dim>1</dim> + <dim>512</dim> + <dim>3000</dim> + </port> + </output> + </layer> + <layer id="20" name="/Constant_2" type="Const" version="opset1"> + <data element_type="f32" shape="" offset="493592" size="4" /> + <output> + <port id="0" precision="FP32" names="/Constant_2_output_0" /> + </output> + </layer> + <layer id="21" name="/Mul_1" type="Multiply" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>512</dim> + <dim>3000</dim> + </port> + <port id="1" precision="FP32" /> + </input> + <output> + <port id="2" precision="FP32" names="/Mul_1_output_0"> + <dim>1</dim> + <dim>512</dim> + <dim>3000</dim> + </port> + </output> + </layer> + <layer id="22" name="onnx::Conv_742" type="Const" version="opset1"> + <data element_type="f32" shape="512, 512, 3" offset="493596" size="3145728" /> + <output> + <port id="0" precision="FP32" names="onnx::Conv_742"> + <dim>512</dim> + <dim>512</dim> + <dim>3</dim> + </port> + </output> + </layer> + <layer id="23" name="/conv2/Conv/WithoutBiases" type="Convolution" version="opset1"> + <data strides="2" dilations="1" pads_begin="1" pads_end="1" auto_pad="explicit" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>512</dim> + <dim>3000</dim> + </port> + <port id="1" precision="FP32"> + <dim>512</dim> + <dim>512</dim> + <dim>3</dim> + </port> + </input> + <output> + <port id="2" precision="FP32"> + <dim>1</dim> + <dim>512</dim> + <dim>1500</dim> + </port> + </output> + </layer> + <layer id="24" name="onnx::Conv_743" type="Const" version="opset1"> + <data element_type="f32" shape="512" offset="3639324" size="2048" /> + <output> + <port id="0" precision="FP32" names="onnx::Conv_743"> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="25" name="Constant_126" type="Const" version="opset1"> + <data element_type="i64" shape="1" offset="493568" size="8" /> + <output> + <port id="0" precision="I64"> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="26" name="ShapeOf_133" type="ShapeOf" version="opset3"> + <data output_type="i64" /> + <input> + <port id="0" precision="FP32"> + <dim>512</dim> + </port> + </input> + <output> + <port id="1" precision="I64"> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="27" name="ShapeOf_124" type="ShapeOf" version="opset3"> + <data output_type="i64" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>512</dim> + <dim>1500</dim> + </port> + </input> + <output> + <port id="1" precision="I64"> + <dim>3</dim> + </port> + </output> + </layer> + <layer id="28" name="ShapeOf_125" type="ShapeOf" version="opset3"> + <data output_type="i64" /> + <input> + <port id="0" precision="I64"> + <dim>3</dim> + </port> + </input> + <output> + <port id="1" precision="I64"> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="29" name="Constant_127" type="Const" version="opset1"> + <data element_type="i64" shape="1" offset="493576" size="8" /> + <output> + <port id="0" precision="I64"> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="30" name="Subtract_128" type="Subtract" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="I64"> + <dim>1</dim> + </port> + <port id="1" precision="I64"> + <dim>1</dim> + </port> + </input> + <output> + <port id="2" precision="I64"> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="31" name="Broadcast_129" type="Broadcast" version="opset3"> + <data mode="numpy" /> + <input> + <port id="0" precision="I64"> + <dim>1</dim> + </port> + <port id="1" precision="I64"> + <dim>1</dim> + </port> + </input> + <output> + <port id="2" precision="I64"> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="32" name="Concat_134" type="Concat" version="opset1"> + <data axis="0" /> + <input> + <port id="0" precision="I64"> + <dim>1</dim> + </port> + <port id="1" precision="I64"> + <dim>1</dim> + </port> + <port id="2" precision="I64"> + <dim>1</dim> + </port> + </input> + <output> + <port id="3" precision="I64"> + <dim>3</dim> + </port> + </output> + </layer> + <layer id="33" name="Reshape_135" type="Reshape" version="opset1"> + <data special_zero="false" /> + <input> + <port id="0" precision="FP32"> + <dim>512</dim> + </port> + <port id="1" precision="I64"> + <dim>3</dim> + </port> + </input> + <output> + <port id="2" precision="FP32"> + <dim>1</dim> + <dim>512</dim> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="34" name="/conv2/Conv" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>512</dim> + <dim>1500</dim> + </port> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>512</dim> + <dim>1</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/conv2/Conv_output_0"> + <dim>1</dim> + <dim>512</dim> + <dim>1500</dim> + </port> + </output> + </layer> + <layer id="35" name="/Constant_3" type="Const" version="opset1"> + <data element_type="f32" shape="" offset="493584" size="4" /> + <output> + <port id="0" precision="FP32" names="/Constant_3_output_0" /> + </output> + </layer> + <layer id="36" name="/Div_1" type="Divide" version="opset1"> + <data auto_broadcast="numpy" m_pythondiv="true" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>512</dim> + <dim>1500</dim> + </port> + <port id="1" precision="FP32" /> + </input> + <output> + <port id="2" precision="FP32" names="/Div_1_output_0"> + <dim>1</dim> + <dim>512</dim> + <dim>1500</dim> + </port> + </output> + </layer> + <layer id="37" name="/Erf_1" type="Erf" version="opset1"> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>512</dim> + <dim>1500</dim> + </port> + </input> + <output> + <port id="1" precision="FP32" names="/Erf_1_output_0"> + <dim>1</dim> + <dim>512</dim> + <dim>1500</dim> + </port> + </output> + </layer> + <layer id="38" name="/Constant_4" type="Const" version="opset1"> + <data element_type="f32" shape="" offset="493588" size="4" /> + <output> + <port id="0" precision="FP32" names="/Constant_4_output_0" /> + </output> + </layer> + <layer id="39" name="/Add_1" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>512</dim> + <dim>1500</dim> + </port> + <port id="1" precision="FP32" /> + </input> + <output> + <port id="2" precision="FP32" names="/Add_1_output_0"> + <dim>1</dim> + <dim>512</dim> + <dim>1500</dim> + </port> + </output> + </layer> + <layer id="40" name="/Mul_2" type="Multiply" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>512</dim> + <dim>1500</dim> + </port> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>512</dim> + <dim>1500</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/Mul_2_output_0"> + <dim>1</dim> + <dim>512</dim> + <dim>1500</dim> + </port> + </output> + </layer> + <layer id="41" name="/Constant_5" type="Const" version="opset1"> + <data element_type="f32" shape="" offset="493592" size="4" /> + <output> + <port id="0" precision="FP32" names="/Constant_5_output_0" /> + </output> + </layer> + <layer id="42" name="/Mul_3" type="Multiply" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>512</dim> + <dim>1500</dim> + </port> + <port id="1" precision="FP32" /> + </input> + <output> + <port id="2" precision="FP32" names="/Mul_3_output_0"> + <dim>1</dim> + <dim>512</dim> + <dim>1500</dim> + </port> + </output> + </layer> + <layer id="43" name="Constant_147" type="Const" version="opset1"> + <data element_type="i64" shape="3" offset="3641372" size="24" /> + <output> + <port id="0" precision="I64"> + <dim>3</dim> + </port> + </output> + </layer> + <layer id="44" name="/Transpose" type="Transpose" version="opset1"> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>512</dim> + <dim>1500</dim> + </port> + <port id="1" precision="I64"> + <dim>3</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/Transpose_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="45" name="positional_embedding" type="Const" version="opset1"> + <data element_type="f32" shape="1500, 512" offset="3641396" size="3072000" /> + <output> + <port id="0" precision="FP32" names="positional_embedding"> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="46" name="/Add_2" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + <port id="1" precision="FP32"> + <dim>1500</dim> + <dim>512</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/Add_2_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="47" name="/Cast" type="Convert" version="opset1"> + <data destination_type="f32" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </input> + <output> + <port id="1" precision="FP32" names="/Cast_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="48" name="/blocks.0/attn_ln/Cast" type="Convert" version="opset1"> + <data destination_type="f32" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </input> + <output> + <port id="1" precision="FP32" names="/blocks.0/attn_ln/Cast_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="49" name="onnx::Add_768" type="Const" version="opset1"> + <data element_type="f32" shape="512" offset="6713396" size="2048" /> + <output> + <port id="0" precision="FP32" names="onnx::Add_768"> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="50" name="onnx::Add_745" type="Const" version="opset1"> + <data element_type="f32" shape="512" offset="6715444" size="2048" /> + <output> + <port id="0" precision="FP32" names="onnx::Add_745"> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="51" name="Constant_154" type="Const" version="opset1"> + <data element_type="i64" shape="" offset="6717492" size="8" /> + <output> + <port id="0" precision="I64" /> + </output> + </layer> + <layer id="52" name="Constant_153" type="Const" version="opset1"> + <data element_type="i64" shape="" offset="6717500" size="8" /> + <output> + <port id="0" precision="I64" /> + </output> + </layer> + <layer id="53" name="Constant_152" type="Const" version="opset1"> + <data element_type="i64" shape="" offset="493568" size="8" /> + <output> + <port id="0" precision="I64" /> + </output> + </layer> + <layer id="54" name="Range_155" type="Range" version="opset4"> + <data output_type="i64" /> + <input> + <port id="0" precision="I64" /> + <port id="1" precision="I64" /> + <port id="2" precision="I64" /> + </input> + <output> + <port id="3" precision="I64"> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="55" name="MVN_156" type="MVN" version="opset6"> + <data eps="9.9999997473787516e-06" normalize_variance="true" eps_mode="INSIDE_SQRT" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + <port id="1" precision="I64"> + <dim>1</dim> + </port> + </input> + <output> + <port id="2" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="56" name="blocks.0.attn_ln.weight" type="Const" version="opset1"> + <data element_type="f32" shape="512" offset="6717508" size="2048" /> + <output> + <port id="0" precision="FP32" names="blocks.0.attn_ln.weight"> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="57" name="Multiply_157" type="Multiply" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + <port id="1" precision="FP32"> + <dim>512</dim> + </port> + </input> + <output> + <port id="2" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="58" name="blocks.0.attn_ln.bias" type="Const" version="opset1"> + <data element_type="f32" shape="512" offset="6719556" size="2048" /> + <output> + <port id="0" precision="FP32" names="blocks.0.attn_ln.bias"> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="59" name="/blocks.0/attn_ln/LayerNormalization" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + <port id="1" precision="FP32"> + <dim>512</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.0/attn_ln/LayerNormalization_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="60" name="/blocks.0/attn_ln/Cast_1" type="Convert" version="opset1"> + <data destination_type="f32" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </input> + <output> + <port id="1" precision="FP32" names="/blocks.0/attn_ln/Cast_1_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="61" name="onnx::MatMul_746" type="Const" version="opset1"> + <data element_type="f32" shape="512, 512" offset="6721604" size="1048576" /> + <output> + <port id="0" precision="FP32" names="onnx::MatMul_746"> + <dim>512</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="62" name="/blocks.0/attn/query/MatMul" type="MatMul" version="opset1"> + <data transpose_a="false" transpose_b="false" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + <port id="1" precision="FP32"> + <dim>512</dim> + <dim>512</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.0/attn/query/MatMul_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="63" name="/blocks.0/attn/query/Add" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32"> + <dim>512</dim> + </port> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.0/attn/query/Add_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="64" name="/blocks.0/attn/Constant_2" type="Const" version="opset1"> + <data element_type="i64" shape="4" offset="7770180" size="32" /> + <output> + <port id="0" precision="I64" names="/blocks.0/attn/Constant_2_output_0"> + <dim>4</dim> + </port> + </output> + </layer> + <layer id="65" name="/blocks.0/attn/Reshape" type="Reshape" version="opset1"> + <data special_zero="true" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + <port id="1" precision="I64"> + <dim>4</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.0/attn/Reshape_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>8</dim> + <dim>64</dim> + </port> + </output> + </layer> + <layer id="66" name="Constant_170" type="Const" version="opset1"> + <data element_type="i64" shape="4" offset="7770212" size="32" /> + <output> + <port id="0" precision="I64"> + <dim>4</dim> + </port> + </output> + </layer> + <layer id="67" name="/blocks.0/attn/Transpose" type="Transpose" version="opset1"> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>8</dim> + <dim>64</dim> + </port> + <port id="1" precision="I64"> + <dim>4</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.0/attn/Transpose_output_0"> + <dim>1</dim> + <dim>8</dim> + <dim>1500</dim> + <dim>64</dim> + </port> + </output> + </layer> + <layer id="68" name="/blocks.0/attn/Constant" type="Const" version="opset1"> + <data element_type="f32" shape="" offset="7770244" size="4" /> + <output> + <port id="0" precision="FP32" names="/blocks.0/attn/Constant_output_0" /> + </output> + </layer> + <layer id="69" name="/blocks.0/attn/Constant_1" type="Const" version="opset1"> + <data element_type="f32" shape="" offset="7770248" size="4" /> + <output> + <port id="0" precision="FP32" names="/blocks.0/attn/Constant_1_output_0" /> + </output> + </layer> + <layer id="70" name="/blocks.0/attn/Pow" type="Power" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32" /> + <port id="1" precision="FP32" /> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.0/attn/Pow_output_0" /> + </output> + </layer> + <layer id="71" name="/blocks.0/attn/Mul" type="Multiply" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>8</dim> + <dim>1500</dim> + <dim>64</dim> + </port> + <port id="1" precision="FP32" /> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.0/attn/Mul_output_0"> + <dim>1</dim> + <dim>8</dim> + <dim>1500</dim> + <dim>64</dim> + </port> + </output> + </layer> + <layer id="72" name="onnx::MatMul_748" type="Const" version="opset1"> + <data element_type="f32" shape="512, 512" offset="7770252" size="1048576" /> + <output> + <port id="0" precision="FP32" names="onnx::MatMul_748"> + <dim>512</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="73" name="/blocks.0/attn/key/MatMul" type="MatMul" version="opset1"> + <data transpose_a="false" transpose_b="false" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + <port id="1" precision="FP32"> + <dim>512</dim> + <dim>512</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.0/attn/key/MatMul_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="74" name="/blocks.0/attn/Constant_3" type="Const" version="opset1"> + <data element_type="i64" shape="4" offset="7770180" size="32" /> + <output> + <port id="0" precision="I64" names="/blocks.0/attn/Constant_3_output_0"> + <dim>4</dim> + </port> + </output> + </layer> + <layer id="75" name="/blocks.0/attn/Reshape_1" type="Reshape" version="opset1"> + <data special_zero="true" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + <port id="1" precision="I64"> + <dim>4</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.0/attn/Reshape_1_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>8</dim> + <dim>64</dim> + </port> + </output> + </layer> + <layer id="76" name="Constant_175" type="Const" version="opset1"> + <data element_type="i64" shape="4" offset="8818828" size="32" /> + <output> + <port id="0" precision="I64"> + <dim>4</dim> + </port> + </output> + </layer> + <layer id="77" name="/blocks.0/attn/Transpose_1" type="Transpose" version="opset1"> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>8</dim> + <dim>64</dim> + </port> + <port id="1" precision="I64"> + <dim>4</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.0/attn/Transpose_1_output_0"> + <dim>1</dim> + <dim>8</dim> + <dim>64</dim> + <dim>1500</dim> + </port> + </output> + </layer> + <layer id="78" name="/blocks.0/attn/Mul_1" type="Multiply" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>8</dim> + <dim>64</dim> + <dim>1500</dim> + </port> + <port id="1" precision="FP32" /> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.0/attn/Mul_1_output_0"> + <dim>1</dim> + <dim>8</dim> + <dim>64</dim> + <dim>1500</dim> + </port> + </output> + </layer> + <layer id="79" name="/blocks.0/attn/MatMul" type="MatMul" version="opset1"> + <data transpose_a="false" transpose_b="false" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>8</dim> + <dim>1500</dim> + <dim>64</dim> + </port> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>8</dim> + <dim>64</dim> + <dim>1500</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.0/attn/MatMul_output_0"> + <dim>1</dim> + <dim>8</dim> + <dim>1500</dim> + <dim>1500</dim> + </port> + </output> + </layer> + <layer id="80" name="/blocks.0/attn/Cast" type="Convert" version="opset1"> + <data destination_type="f32" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>8</dim> + <dim>1500</dim> + <dim>1500</dim> + </port> + </input> + <output> + <port id="1" precision="FP32" names="/blocks.0/attn/Cast_output_0"> + <dim>1</dim> + <dim>8</dim> + <dim>1500</dim> + <dim>1500</dim> + </port> + </output> + </layer> + <layer id="81" name="/blocks.0/attn/Softmax" type="SoftMax" version="opset8"> + <data axis="-1" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>8</dim> + <dim>1500</dim> + <dim>1500</dim> + </port> + </input> + <output> + <port id="1" precision="FP32" names="/blocks.0/attn/Softmax_output_0"> + <dim>1</dim> + <dim>8</dim> + <dim>1500</dim> + <dim>1500</dim> + </port> + </output> + </layer> + <layer id="82" name="/blocks.0/attn/Cast_1" type="Convert" version="opset1"> + <data destination_type="f32" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>8</dim> + <dim>1500</dim> + <dim>1500</dim> + </port> + </input> + <output> + <port id="1" precision="FP32" names="/blocks.0/attn/Cast_1_output_0"> + <dim>1</dim> + <dim>8</dim> + <dim>1500</dim> + <dim>1500</dim> + </port> + </output> + </layer> + <layer id="83" name="onnx::Add_750" type="Const" version="opset1"> + <data element_type="f32" shape="512" offset="8818860" size="2048" /> + <output> + <port id="0" precision="FP32" names="onnx::Add_750"> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="84" name="onnx::MatMul_751" type="Const" version="opset1"> + <data element_type="f32" shape="512, 512" offset="8820908" size="1048576" /> + <output> + <port id="0" precision="FP32" names="onnx::MatMul_751"> + <dim>512</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="85" name="/blocks.0/attn/value/MatMul" type="MatMul" version="opset1"> + <data transpose_a="false" transpose_b="false" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + <port id="1" precision="FP32"> + <dim>512</dim> + <dim>512</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.0/attn/value/MatMul_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="86" name="/blocks.0/attn/value/Add" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32"> + <dim>512</dim> + </port> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.0/attn/value/Add_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="87" name="/blocks.0/attn/Constant_4" type="Const" version="opset1"> + <data element_type="i64" shape="4" offset="7770180" size="32" /> + <output> + <port id="0" precision="I64" names="/blocks.0/attn/Constant_4_output_0"> + <dim>4</dim> + </port> + </output> + </layer> + <layer id="88" name="/blocks.0/attn/Reshape_2" type="Reshape" version="opset1"> + <data special_zero="true" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + <port id="1" precision="I64"> + <dim>4</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.0/attn/Reshape_2_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>8</dim> + <dim>64</dim> + </port> + </output> + </layer> + <layer id="89" name="Constant_180" type="Const" version="opset1"> + <data element_type="i64" shape="4" offset="7770212" size="32" /> + <output> + <port id="0" precision="I64"> + <dim>4</dim> + </port> + </output> + </layer> + <layer id="90" name="/blocks.0/attn/Transpose_2" type="Transpose" version="opset1"> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>8</dim> + <dim>64</dim> + </port> + <port id="1" precision="I64"> + <dim>4</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.0/attn/Transpose_2_output_0"> + <dim>1</dim> + <dim>8</dim> + <dim>1500</dim> + <dim>64</dim> + </port> + </output> + </layer> + <layer id="91" name="/blocks.0/attn/MatMul_1" type="MatMul" version="opset1"> + <data transpose_a="false" transpose_b="false" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>8</dim> + <dim>1500</dim> + <dim>1500</dim> + </port> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>8</dim> + <dim>1500</dim> + <dim>64</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.0/attn/MatMul_1_output_0"> + <dim>1</dim> + <dim>8</dim> + <dim>1500</dim> + <dim>64</dim> + </port> + </output> + </layer> + <layer id="92" name="Constant_187" type="Const" version="opset1"> + <data element_type="i64" shape="4" offset="7770212" size="32" /> + <output> + <port id="0" precision="I64"> + <dim>4</dim> + </port> + </output> + </layer> + <layer id="93" name="/blocks.0/attn/Transpose_3" type="Transpose" version="opset1"> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>8</dim> + <dim>1500</dim> + <dim>64</dim> + </port> + <port id="1" precision="I64"> + <dim>4</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.0/attn/Transpose_3_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>8</dim> + <dim>64</dim> + </port> + </output> + </layer> + <layer id="94" name="/blocks.0/attn/Shape" type="ShapeOf" version="opset3"> + <data output_type="i64" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>8</dim> + <dim>64</dim> + </port> + </input> + <output> + <port id="1" precision="I64" names="/blocks.0/attn/Shape_output_0"> + <dim>4</dim> + </port> + </output> + </layer> + <layer id="95" name="/blocks.0/attn/Constant_6" type="Const" version="opset1"> + <data element_type="i64" shape="1" offset="6717500" size="8" /> + <output> + <port id="0" precision="I64" names="/blocks.0/attn/Constant_6_output_0"> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="96" name="/blocks.0/attn/Constant_7" type="Const" version="opset1"> + <data element_type="i64" shape="1" offset="493576" size="8" /> + <output> + <port id="0" precision="I64" names="/blocks.0/attn/Constant_7_output_0"> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="97" name="Constant_193" type="Const" version="opset1"> + <data element_type="i64" shape="1" offset="493568" size="8" /> + <output> + <port id="0" precision="I64"> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="98" name="ShapeOf_194" type="ShapeOf" version="opset3"> + <data output_type="i64" /> + <input> + <port id="0" precision="I64"> + <dim>1</dim> + </port> + </input> + <output> + <port id="1" precision="I64"> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="99" name="Broadcast_195" type="Broadcast" version="opset3"> + <data mode="numpy" /> + <input> + <port id="0" precision="I64"> + <dim>1</dim> + </port> + <port id="1" precision="I64"> + <dim>1</dim> + </port> + </input> + <output> + <port id="2" precision="I64"> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="100" name="/blocks.0/attn/Constant_5" type="Const" version="opset1"> + <data element_type="i64" shape="1" offset="6717500" size="8" /> + <output> + <port id="0" precision="I64" names="/blocks.0/attn/Constant_5_output_0"> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="101" name="/blocks.0/attn/Slice" type="Slice" version="opset8"> + <input> + <port id="0" precision="I64"> + <dim>4</dim> + </port> + <port id="1" precision="I64"> + <dim>1</dim> + </port> + <port id="2" precision="I64"> + <dim>1</dim> + </port> + <port id="3" precision="I64"> + <dim>1</dim> + </port> + <port id="4" precision="I64"> + <dim>1</dim> + </port> + </input> + <output> + <port id="5" precision="I64" names="/blocks.0/attn/Slice_output_0"> + <dim>2</dim> + </port> + </output> + </layer> + <layer id="102" name="/blocks.0/attn/Constant_8" type="Const" version="opset1"> + <data element_type="i64" shape="1" offset="6717492" size="8" /> + <output> + <port id="0" precision="I64" names="/blocks.0/attn/Constant_8_output_0"> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="103" name="/blocks.0/attn/Concat" type="Concat" version="opset1"> + <data axis="0" /> + <input> + <port id="0" precision="I64"> + <dim>2</dim> + </port> + <port id="1" precision="I64"> + <dim>1</dim> + </port> + </input> + <output> + <port id="2" precision="I64" names="/blocks.0/attn/Concat_output_0"> + <dim>3</dim> + </port> + </output> + </layer> + <layer id="104" name="/blocks.0/attn/Reshape_3" type="Reshape" version="opset1"> + <data special_zero="true" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>8</dim> + <dim>64</dim> + </port> + <port id="1" precision="I64"> + <dim>3</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.0/attn/Reshape_3_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="105" name="onnx::MatMul_769" type="Const" version="opset1"> + <data element_type="f32" shape="512, 512" offset="9869484" size="1048576" /> + <output> + <port id="0" precision="FP32" names="onnx::MatMul_769"> + <dim>512</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="106" name="/blocks.0/attn/out/MatMul" type="MatMul" version="opset1"> + <data transpose_a="false" transpose_b="false" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + <port id="1" precision="FP32"> + <dim>512</dim> + <dim>512</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.0/attn/out/MatMul_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="107" name="/blocks.0/attn/out/Add" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32"> + <dim>512</dim> + </port> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.0/attn/out/Add_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="108" name="/blocks.0/Add" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.0/Add_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="109" name="/blocks.0/mlp_ln/Cast" type="Convert" version="opset1"> + <data destination_type="f32" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </input> + <output> + <port id="1" precision="FP32" names="/blocks.0/mlp_ln/Cast_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="110" name="onnx::Add_774" type="Const" version="opset1"> + <data element_type="f32" shape="512" offset="10918060" size="2048" /> + <output> + <port id="0" precision="FP32" names="onnx::Add_774"> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="111" name="onnx::Add_771" type="Const" version="opset1"> + <data element_type="f32" shape="2048" offset="10920108" size="8192" /> + <output> + <port id="0" precision="FP32" names="onnx::Add_771"> + <dim>2048</dim> + </port> + </output> + </layer> + <layer id="112" name="Constant_213" type="Const" version="opset1"> + <data element_type="i64" shape="" offset="6717492" size="8" /> + <output> + <port id="0" precision="I64" /> + </output> + </layer> + <layer id="113" name="Constant_212" type="Const" version="opset1"> + <data element_type="i64" shape="" offset="6717500" size="8" /> + <output> + <port id="0" precision="I64" /> + </output> + </layer> + <layer id="114" name="Constant_211" type="Const" version="opset1"> + <data element_type="i64" shape="" offset="493568" size="8" /> + <output> + <port id="0" precision="I64" /> + </output> + </layer> + <layer id="115" name="Range_214" type="Range" version="opset4"> + <data output_type="i64" /> + <input> + <port id="0" precision="I64" /> + <port id="1" precision="I64" /> + <port id="2" precision="I64" /> + </input> + <output> + <port id="3" precision="I64"> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="116" name="MVN_215" type="MVN" version="opset6"> + <data eps="9.9999997473787516e-06" normalize_variance="true" eps_mode="INSIDE_SQRT" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + <port id="1" precision="I64"> + <dim>1</dim> + </port> + </input> + <output> + <port id="2" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="117" name="blocks.0.mlp_ln.weight" type="Const" version="opset1"> + <data element_type="f32" shape="512" offset="10928300" size="2048" /> + <output> + <port id="0" precision="FP32" names="blocks.0.mlp_ln.weight"> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="118" name="Multiply_216" type="Multiply" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + <port id="1" precision="FP32"> + <dim>512</dim> + </port> + </input> + <output> + <port id="2" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="119" name="blocks.0.mlp_ln.bias" type="Const" version="opset1"> + <data element_type="f32" shape="512" offset="10930348" size="2048" /> + <output> + <port id="0" precision="FP32" names="blocks.0.mlp_ln.bias"> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="120" name="/blocks.0/mlp_ln/LayerNormalization" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + <port id="1" precision="FP32"> + <dim>512</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.0/mlp_ln/LayerNormalization_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="121" name="/blocks.0/mlp_ln/Cast_1" type="Convert" version="opset1"> + <data destination_type="f32" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </input> + <output> + <port id="1" precision="FP32" names="/blocks.0/mlp_ln/Cast_1_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="122" name="onnx::MatMul_772" type="Const" version="opset1"> + <data element_type="f32" shape="512, 2048" offset="10932396" size="4194304" /> + <output> + <port id="0" precision="FP32" names="onnx::MatMul_772"> + <dim>512</dim> + <dim>2048</dim> + </port> + </output> + </layer> + <layer id="123" name="/blocks.0/mlp/mlp.0/MatMul" type="MatMul" version="opset1"> + <data transpose_a="false" transpose_b="false" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + <port id="1" precision="FP32"> + <dim>512</dim> + <dim>2048</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.0/mlp/mlp.0/MatMul_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>2048</dim> + </port> + </output> + </layer> + <layer id="124" name="/blocks.0/mlp/mlp.0/Add" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32"> + <dim>2048</dim> + </port> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>2048</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.0/mlp/mlp.0/Add_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>2048</dim> + </port> + </output> + </layer> + <layer id="125" name="/blocks.0/mlp/mlp.1/Constant" type="Const" version="opset1"> + <data element_type="f32" shape="" offset="493584" size="4" /> + <output> + <port id="0" precision="FP32" names="/blocks.0/mlp/mlp.1/Constant_output_0" /> + </output> + </layer> + <layer id="126" name="/blocks.0/mlp/mlp.1/Div" type="Divide" version="opset1"> + <data auto_broadcast="numpy" m_pythondiv="true" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>2048</dim> + </port> + <port id="1" precision="FP32" /> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.0/mlp/mlp.1/Div_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>2048</dim> + </port> + </output> + </layer> + <layer id="127" name="/blocks.0/mlp/mlp.1/Erf" type="Erf" version="opset1"> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>2048</dim> + </port> + </input> + <output> + <port id="1" precision="FP32" names="/blocks.0/mlp/mlp.1/Erf_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>2048</dim> + </port> + </output> + </layer> + <layer id="128" name="/blocks.0/mlp/mlp.1/Constant_1" type="Const" version="opset1"> + <data element_type="f32" shape="" offset="493588" size="4" /> + <output> + <port id="0" precision="FP32" names="/blocks.0/mlp/mlp.1/Constant_1_output_0" /> + </output> + </layer> + <layer id="129" name="/blocks.0/mlp/mlp.1/Add" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>2048</dim> + </port> + <port id="1" precision="FP32" /> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.0/mlp/mlp.1/Add_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>2048</dim> + </port> + </output> + </layer> + <layer id="130" name="/blocks.0/mlp/mlp.1/Mul" type="Multiply" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>2048</dim> + </port> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>2048</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.0/mlp/mlp.1/Mul_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>2048</dim> + </port> + </output> + </layer> + <layer id="131" name="/blocks.0/mlp/mlp.1/Constant_2" type="Const" version="opset1"> + <data element_type="f32" shape="" offset="493592" size="4" /> + <output> + <port id="0" precision="FP32" names="/blocks.0/mlp/mlp.1/Constant_2_output_0" /> + </output> + </layer> + <layer id="132" name="/blocks.0/mlp/mlp.1/Mul_1" type="Multiply" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>2048</dim> + </port> + <port id="1" precision="FP32" /> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.0/mlp/mlp.1/Mul_1_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>2048</dim> + </port> + </output> + </layer> + <layer id="133" name="onnx::MatMul_775" type="Const" version="opset1"> + <data element_type="f32" shape="2048, 512" offset="15126700" size="4194304" /> + <output> + <port id="0" precision="FP32" names="onnx::MatMul_775"> + <dim>2048</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="134" name="/blocks.0/mlp/mlp.2/MatMul" type="MatMul" version="opset1"> + <data transpose_a="false" transpose_b="false" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>2048</dim> + </port> + <port id="1" precision="FP32"> + <dim>2048</dim> + <dim>512</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.0/mlp/mlp.2/MatMul_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="135" name="/blocks.0/mlp/mlp.2/Add" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32"> + <dim>512</dim> + </port> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.0/mlp/mlp.2/Add_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="136" name="/blocks.0/Add_1" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.0/Add_1_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="137" name="/blocks.1/attn_ln/Cast" type="Convert" version="opset1"> + <data destination_type="f32" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </input> + <output> + <port id="1" precision="FP32" names="/blocks.1/attn_ln/Cast_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="138" name="onnx::Add_800" type="Const" version="opset1"> + <data element_type="f32" shape="512" offset="19321004" size="2048" /> + <output> + <port id="0" precision="FP32" names="onnx::Add_800"> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="139" name="onnx::Add_777" type="Const" version="opset1"> + <data element_type="f32" shape="512" offset="19323052" size="2048" /> + <output> + <port id="0" precision="FP32" names="onnx::Add_777"> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="140" name="Constant_235" type="Const" version="opset1"> + <data element_type="i64" shape="" offset="6717492" size="8" /> + <output> + <port id="0" precision="I64" /> + </output> + </layer> + <layer id="141" name="Constant_234" type="Const" version="opset1"> + <data element_type="i64" shape="" offset="6717500" size="8" /> + <output> + <port id="0" precision="I64" /> + </output> + </layer> + <layer id="142" name="Constant_233" type="Const" version="opset1"> + <data element_type="i64" shape="" offset="493568" size="8" /> + <output> + <port id="0" precision="I64" /> + </output> + </layer> + <layer id="143" name="Range_236" type="Range" version="opset4"> + <data output_type="i64" /> + <input> + <port id="0" precision="I64" /> + <port id="1" precision="I64" /> + <port id="2" precision="I64" /> + </input> + <output> + <port id="3" precision="I64"> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="144" name="MVN_237" type="MVN" version="opset6"> + <data eps="9.9999997473787516e-06" normalize_variance="true" eps_mode="INSIDE_SQRT" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + <port id="1" precision="I64"> + <dim>1</dim> + </port> + </input> + <output> + <port id="2" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="145" name="blocks.1.attn_ln.weight" type="Const" version="opset1"> + <data element_type="f32" shape="512" offset="19325100" size="2048" /> + <output> + <port id="0" precision="FP32" names="blocks.1.attn_ln.weight"> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="146" name="Multiply_238" type="Multiply" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + <port id="1" precision="FP32"> + <dim>512</dim> + </port> + </input> + <output> + <port id="2" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="147" name="blocks.1.attn_ln.bias" type="Const" version="opset1"> + <data element_type="f32" shape="512" offset="19327148" size="2048" /> + <output> + <port id="0" precision="FP32" names="blocks.1.attn_ln.bias"> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="148" name="/blocks.1/attn_ln/LayerNormalization" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + <port id="1" precision="FP32"> + <dim>512</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.1/attn_ln/LayerNormalization_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="149" name="/blocks.1/attn_ln/Cast_1" type="Convert" version="opset1"> + <data destination_type="f32" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </input> + <output> + <port id="1" precision="FP32" names="/blocks.1/attn_ln/Cast_1_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="150" name="onnx::MatMul_778" type="Const" version="opset1"> + <data element_type="f32" shape="512, 512" offset="19329196" size="1048576" /> + <output> + <port id="0" precision="FP32" names="onnx::MatMul_778"> + <dim>512</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="151" name="/blocks.1/attn/query/MatMul" type="MatMul" version="opset1"> + <data transpose_a="false" transpose_b="false" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + <port id="1" precision="FP32"> + <dim>512</dim> + <dim>512</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.1/attn/query/MatMul_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="152" name="/blocks.1/attn/query/Add" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32"> + <dim>512</dim> + </port> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.1/attn/query/Add_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="153" name="/blocks.1/attn/Constant_2" type="Const" version="opset1"> + <data element_type="i64" shape="4" offset="7770180" size="32" /> + <output> + <port id="0" precision="I64" names="/blocks.1/attn/Constant_2_output_0"> + <dim>4</dim> + </port> + </output> + </layer> + <layer id="154" name="/blocks.1/attn/Reshape" type="Reshape" version="opset1"> + <data special_zero="true" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + <port id="1" precision="I64"> + <dim>4</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.1/attn/Reshape_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>8</dim> + <dim>64</dim> + </port> + </output> + </layer> + <layer id="155" name="Constant_251" type="Const" version="opset1"> + <data element_type="i64" shape="4" offset="7770212" size="32" /> + <output> + <port id="0" precision="I64"> + <dim>4</dim> + </port> + </output> + </layer> + <layer id="156" name="/blocks.1/attn/Transpose" type="Transpose" version="opset1"> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>8</dim> + <dim>64</dim> + </port> + <port id="1" precision="I64"> + <dim>4</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.1/attn/Transpose_output_0"> + <dim>1</dim> + <dim>8</dim> + <dim>1500</dim> + <dim>64</dim> + </port> + </output> + </layer> + <layer id="157" name="/blocks.1/attn/Constant" type="Const" version="opset1"> + <data element_type="f32" shape="" offset="7770244" size="4" /> + <output> + <port id="0" precision="FP32" names="/blocks.1/attn/Constant_output_0" /> + </output> + </layer> + <layer id="158" name="/blocks.1/attn/Constant_1" type="Const" version="opset1"> + <data element_type="f32" shape="" offset="7770248" size="4" /> + <output> + <port id="0" precision="FP32" names="/blocks.1/attn/Constant_1_output_0" /> + </output> + </layer> + <layer id="159" name="/blocks.1/attn/Pow" type="Power" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32" /> + <port id="1" precision="FP32" /> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.1/attn/Pow_output_0" /> + </output> + </layer> + <layer id="160" name="/blocks.1/attn/Mul" type="Multiply" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>8</dim> + <dim>1500</dim> + <dim>64</dim> + </port> + <port id="1" precision="FP32" /> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.1/attn/Mul_output_0"> + <dim>1</dim> + <dim>8</dim> + <dim>1500</dim> + <dim>64</dim> + </port> + </output> + </layer> + <layer id="161" name="onnx::MatMul_780" type="Const" version="opset1"> + <data element_type="f32" shape="512, 512" offset="20377772" size="1048576" /> + <output> + <port id="0" precision="FP32" names="onnx::MatMul_780"> + <dim>512</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="162" name="/blocks.1/attn/key/MatMul" type="MatMul" version="opset1"> + <data transpose_a="false" transpose_b="false" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + <port id="1" precision="FP32"> + <dim>512</dim> + <dim>512</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.1/attn/key/MatMul_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="163" name="/blocks.1/attn/Constant_3" type="Const" version="opset1"> + <data element_type="i64" shape="4" offset="7770180" size="32" /> + <output> + <port id="0" precision="I64" names="/blocks.1/attn/Constant_3_output_0"> + <dim>4</dim> + </port> + </output> + </layer> + <layer id="164" name="/blocks.1/attn/Reshape_1" type="Reshape" version="opset1"> + <data special_zero="true" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + <port id="1" precision="I64"> + <dim>4</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.1/attn/Reshape_1_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>8</dim> + <dim>64</dim> + </port> + </output> + </layer> + <layer id="165" name="Constant_256" type="Const" version="opset1"> + <data element_type="i64" shape="4" offset="8818828" size="32" /> + <output> + <port id="0" precision="I64"> + <dim>4</dim> + </port> + </output> + </layer> + <layer id="166" name="/blocks.1/attn/Transpose_1" type="Transpose" version="opset1"> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>8</dim> + <dim>64</dim> + </port> + <port id="1" precision="I64"> + <dim>4</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.1/attn/Transpose_1_output_0"> + <dim>1</dim> + <dim>8</dim> + <dim>64</dim> + <dim>1500</dim> + </port> + </output> + </layer> + <layer id="167" name="/blocks.1/attn/Mul_1" type="Multiply" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>8</dim> + <dim>64</dim> + <dim>1500</dim> + </port> + <port id="1" precision="FP32" /> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.1/attn/Mul_1_output_0"> + <dim>1</dim> + <dim>8</dim> + <dim>64</dim> + <dim>1500</dim> + </port> + </output> + </layer> + <layer id="168" name="/blocks.1/attn/MatMul" type="MatMul" version="opset1"> + <data transpose_a="false" transpose_b="false" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>8</dim> + <dim>1500</dim> + <dim>64</dim> + </port> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>8</dim> + <dim>64</dim> + <dim>1500</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.1/attn/MatMul_output_0"> + <dim>1</dim> + <dim>8</dim> + <dim>1500</dim> + <dim>1500</dim> + </port> + </output> + </layer> + <layer id="169" name="/blocks.1/attn/Cast" type="Convert" version="opset1"> + <data destination_type="f32" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>8</dim> + <dim>1500</dim> + <dim>1500</dim> + </port> + </input> + <output> + <port id="1" precision="FP32" names="/blocks.1/attn/Cast_output_0"> + <dim>1</dim> + <dim>8</dim> + <dim>1500</dim> + <dim>1500</dim> + </port> + </output> + </layer> + <layer id="170" name="/blocks.1/attn/Softmax" type="SoftMax" version="opset8"> + <data axis="-1" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>8</dim> + <dim>1500</dim> + <dim>1500</dim> + </port> + </input> + <output> + <port id="1" precision="FP32" names="/blocks.1/attn/Softmax_output_0"> + <dim>1</dim> + <dim>8</dim> + <dim>1500</dim> + <dim>1500</dim> + </port> + </output> + </layer> + <layer id="171" name="/blocks.1/attn/Cast_1" type="Convert" version="opset1"> + <data destination_type="f32" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>8</dim> + <dim>1500</dim> + <dim>1500</dim> + </port> + </input> + <output> + <port id="1" precision="FP32" names="/blocks.1/attn/Cast_1_output_0"> + <dim>1</dim> + <dim>8</dim> + <dim>1500</dim> + <dim>1500</dim> + </port> + </output> + </layer> + <layer id="172" name="onnx::Add_782" type="Const" version="opset1"> + <data element_type="f32" shape="512" offset="21426348" size="2048" /> + <output> + <port id="0" precision="FP32" names="onnx::Add_782"> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="173" name="onnx::MatMul_783" type="Const" version="opset1"> + <data element_type="f32" shape="512, 512" offset="21428396" size="1048576" /> + <output> + <port id="0" precision="FP32" names="onnx::MatMul_783"> + <dim>512</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="174" name="/blocks.1/attn/value/MatMul" type="MatMul" version="opset1"> + <data transpose_a="false" transpose_b="false" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + <port id="1" precision="FP32"> + <dim>512</dim> + <dim>512</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.1/attn/value/MatMul_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="175" name="/blocks.1/attn/value/Add" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32"> + <dim>512</dim> + </port> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.1/attn/value/Add_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="176" name="/blocks.1/attn/Constant_4" type="Const" version="opset1"> + <data element_type="i64" shape="4" offset="7770180" size="32" /> + <output> + <port id="0" precision="I64" names="/blocks.1/attn/Constant_4_output_0"> + <dim>4</dim> + </port> + </output> + </layer> + <layer id="177" name="/blocks.1/attn/Reshape_2" type="Reshape" version="opset1"> + <data special_zero="true" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + <port id="1" precision="I64"> + <dim>4</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.1/attn/Reshape_2_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>8</dim> + <dim>64</dim> + </port> + </output> + </layer> + <layer id="178" name="Constant_261" type="Const" version="opset1"> + <data element_type="i64" shape="4" offset="7770212" size="32" /> + <output> + <port id="0" precision="I64"> + <dim>4</dim> + </port> + </output> + </layer> + <layer id="179" name="/blocks.1/attn/Transpose_2" type="Transpose" version="opset1"> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>8</dim> + <dim>64</dim> + </port> + <port id="1" precision="I64"> + <dim>4</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.1/attn/Transpose_2_output_0"> + <dim>1</dim> + <dim>8</dim> + <dim>1500</dim> + <dim>64</dim> + </port> + </output> + </layer> + <layer id="180" name="/blocks.1/attn/MatMul_1" type="MatMul" version="opset1"> + <data transpose_a="false" transpose_b="false" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>8</dim> + <dim>1500</dim> + <dim>1500</dim> + </port> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>8</dim> + <dim>1500</dim> + <dim>64</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.1/attn/MatMul_1_output_0"> + <dim>1</dim> + <dim>8</dim> + <dim>1500</dim> + <dim>64</dim> + </port> + </output> + </layer> + <layer id="181" name="Constant_268" type="Const" version="opset1"> + <data element_type="i64" shape="4" offset="7770212" size="32" /> + <output> + <port id="0" precision="I64"> + <dim>4</dim> + </port> + </output> + </layer> + <layer id="182" name="/blocks.1/attn/Transpose_3" type="Transpose" version="opset1"> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>8</dim> + <dim>1500</dim> + <dim>64</dim> + </port> + <port id="1" precision="I64"> + <dim>4</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.1/attn/Transpose_3_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>8</dim> + <dim>64</dim> + </port> + </output> + </layer> + <layer id="183" name="/blocks.1/attn/Shape" type="ShapeOf" version="opset3"> + <data output_type="i64" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>8</dim> + <dim>64</dim> + </port> + </input> + <output> + <port id="1" precision="I64" names="/blocks.1/attn/Shape_output_0"> + <dim>4</dim> + </port> + </output> + </layer> + <layer id="184" name="/blocks.1/attn/Constant_6" type="Const" version="opset1"> + <data element_type="i64" shape="1" offset="6717500" size="8" /> + <output> + <port id="0" precision="I64" names="/blocks.1/attn/Constant_6_output_0"> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="185" name="/blocks.1/attn/Constant_7" type="Const" version="opset1"> + <data element_type="i64" shape="1" offset="493576" size="8" /> + <output> + <port id="0" precision="I64" names="/blocks.1/attn/Constant_7_output_0"> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="186" name="Constant_274" type="Const" version="opset1"> + <data element_type="i64" shape="1" offset="493568" size="8" /> + <output> + <port id="0" precision="I64"> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="187" name="ShapeOf_275" type="ShapeOf" version="opset3"> + <data output_type="i64" /> + <input> + <port id="0" precision="I64"> + <dim>1</dim> + </port> + </input> + <output> + <port id="1" precision="I64"> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="188" name="Broadcast_276" type="Broadcast" version="opset3"> + <data mode="numpy" /> + <input> + <port id="0" precision="I64"> + <dim>1</dim> + </port> + <port id="1" precision="I64"> + <dim>1</dim> + </port> + </input> + <output> + <port id="2" precision="I64"> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="189" name="/blocks.1/attn/Constant_5" type="Const" version="opset1"> + <data element_type="i64" shape="1" offset="6717500" size="8" /> + <output> + <port id="0" precision="I64" names="/blocks.1/attn/Constant_5_output_0"> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="190" name="/blocks.1/attn/Slice" type="Slice" version="opset8"> + <input> + <port id="0" precision="I64"> + <dim>4</dim> + </port> + <port id="1" precision="I64"> + <dim>1</dim> + </port> + <port id="2" precision="I64"> + <dim>1</dim> + </port> + <port id="3" precision="I64"> + <dim>1</dim> + </port> + <port id="4" precision="I64"> + <dim>1</dim> + </port> + </input> + <output> + <port id="5" precision="I64" names="/blocks.1/attn/Slice_output_0"> + <dim>2</dim> + </port> + </output> + </layer> + <layer id="191" name="/blocks.1/attn/Constant_8" type="Const" version="opset1"> + <data element_type="i64" shape="1" offset="6717492" size="8" /> + <output> + <port id="0" precision="I64" names="/blocks.1/attn/Constant_8_output_0"> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="192" name="/blocks.1/attn/Concat" type="Concat" version="opset1"> + <data axis="0" /> + <input> + <port id="0" precision="I64"> + <dim>2</dim> + </port> + <port id="1" precision="I64"> + <dim>1</dim> + </port> + </input> + <output> + <port id="2" precision="I64" names="/blocks.1/attn/Concat_output_0"> + <dim>3</dim> + </port> + </output> + </layer> + <layer id="193" name="/blocks.1/attn/Reshape_3" type="Reshape" version="opset1"> + <data special_zero="true" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>8</dim> + <dim>64</dim> + </port> + <port id="1" precision="I64"> + <dim>3</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.1/attn/Reshape_3_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="194" name="onnx::MatMul_801" type="Const" version="opset1"> + <data element_type="f32" shape="512, 512" offset="22476972" size="1048576" /> + <output> + <port id="0" precision="FP32" names="onnx::MatMul_801"> + <dim>512</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="195" name="/blocks.1/attn/out/MatMul" type="MatMul" version="opset1"> + <data transpose_a="false" transpose_b="false" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + <port id="1" precision="FP32"> + <dim>512</dim> + <dim>512</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.1/attn/out/MatMul_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="196" name="/blocks.1/attn/out/Add" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32"> + <dim>512</dim> + </port> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.1/attn/out/Add_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="197" name="/blocks.1/Add" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.1/Add_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="198" name="/blocks.1/mlp_ln/Cast" type="Convert" version="opset1"> + <data destination_type="f32" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </input> + <output> + <port id="1" precision="FP32" names="/blocks.1/mlp_ln/Cast_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="199" name="onnx::Add_806" type="Const" version="opset1"> + <data element_type="f32" shape="512" offset="23525548" size="2048" /> + <output> + <port id="0" precision="FP32" names="onnx::Add_806"> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="200" name="onnx::Add_803" type="Const" version="opset1"> + <data element_type="f32" shape="2048" offset="23527596" size="8192" /> + <output> + <port id="0" precision="FP32" names="onnx::Add_803"> + <dim>2048</dim> + </port> + </output> + </layer> + <layer id="201" name="Constant_294" type="Const" version="opset1"> + <data element_type="i64" shape="" offset="6717492" size="8" /> + <output> + <port id="0" precision="I64" /> + </output> + </layer> + <layer id="202" name="Constant_293" type="Const" version="opset1"> + <data element_type="i64" shape="" offset="6717500" size="8" /> + <output> + <port id="0" precision="I64" /> + </output> + </layer> + <layer id="203" name="Constant_292" type="Const" version="opset1"> + <data element_type="i64" shape="" offset="493568" size="8" /> + <output> + <port id="0" precision="I64" /> + </output> + </layer> + <layer id="204" name="Range_295" type="Range" version="opset4"> + <data output_type="i64" /> + <input> + <port id="0" precision="I64" /> + <port id="1" precision="I64" /> + <port id="2" precision="I64" /> + </input> + <output> + <port id="3" precision="I64"> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="205" name="MVN_296" type="MVN" version="opset6"> + <data eps="9.9999997473787516e-06" normalize_variance="true" eps_mode="INSIDE_SQRT" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + <port id="1" precision="I64"> + <dim>1</dim> + </port> + </input> + <output> + <port id="2" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="206" name="blocks.1.mlp_ln.weight" type="Const" version="opset1"> + <data element_type="f32" shape="512" offset="23535788" size="2048" /> + <output> + <port id="0" precision="FP32" names="blocks.1.mlp_ln.weight"> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="207" name="Multiply_297" type="Multiply" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + <port id="1" precision="FP32"> + <dim>512</dim> + </port> + </input> + <output> + <port id="2" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="208" name="blocks.1.mlp_ln.bias" type="Const" version="opset1"> + <data element_type="f32" shape="512" offset="23537836" size="2048" /> + <output> + <port id="0" precision="FP32" names="blocks.1.mlp_ln.bias"> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="209" name="/blocks.1/mlp_ln/LayerNormalization" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + <port id="1" precision="FP32"> + <dim>512</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.1/mlp_ln/LayerNormalization_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="210" name="/blocks.1/mlp_ln/Cast_1" type="Convert" version="opset1"> + <data destination_type="f32" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </input> + <output> + <port id="1" precision="FP32" names="/blocks.1/mlp_ln/Cast_1_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="211" name="onnx::MatMul_804" type="Const" version="opset1"> + <data element_type="f32" shape="512, 2048" offset="23539884" size="4194304" /> + <output> + <port id="0" precision="FP32" names="onnx::MatMul_804"> + <dim>512</dim> + <dim>2048</dim> + </port> + </output> + </layer> + <layer id="212" name="/blocks.1/mlp/mlp.0/MatMul" type="MatMul" version="opset1"> + <data transpose_a="false" transpose_b="false" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + <port id="1" precision="FP32"> + <dim>512</dim> + <dim>2048</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.1/mlp/mlp.0/MatMul_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>2048</dim> + </port> + </output> + </layer> + <layer id="213" name="/blocks.1/mlp/mlp.0/Add" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32"> + <dim>2048</dim> + </port> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>2048</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.1/mlp/mlp.0/Add_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>2048</dim> + </port> + </output> + </layer> + <layer id="214" name="/blocks.1/mlp/mlp.1/Constant" type="Const" version="opset1"> + <data element_type="f32" shape="" offset="493584" size="4" /> + <output> + <port id="0" precision="FP32" names="/blocks.1/mlp/mlp.1/Constant_output_0" /> + </output> + </layer> + <layer id="215" name="/blocks.1/mlp/mlp.1/Div" type="Divide" version="opset1"> + <data auto_broadcast="numpy" m_pythondiv="true" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>2048</dim> + </port> + <port id="1" precision="FP32" /> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.1/mlp/mlp.1/Div_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>2048</dim> + </port> + </output> + </layer> + <layer id="216" name="/blocks.1/mlp/mlp.1/Erf" type="Erf" version="opset1"> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>2048</dim> + </port> + </input> + <output> + <port id="1" precision="FP32" names="/blocks.1/mlp/mlp.1/Erf_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>2048</dim> + </port> + </output> + </layer> + <layer id="217" name="/blocks.1/mlp/mlp.1/Constant_1" type="Const" version="opset1"> + <data element_type="f32" shape="" offset="493588" size="4" /> + <output> + <port id="0" precision="FP32" names="/blocks.1/mlp/mlp.1/Constant_1_output_0" /> + </output> + </layer> + <layer id="218" name="/blocks.1/mlp/mlp.1/Add" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>2048</dim> + </port> + <port id="1" precision="FP32" /> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.1/mlp/mlp.1/Add_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>2048</dim> + </port> + </output> + </layer> + <layer id="219" name="/blocks.1/mlp/mlp.1/Mul" type="Multiply" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>2048</dim> + </port> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>2048</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.1/mlp/mlp.1/Mul_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>2048</dim> + </port> + </output> + </layer> + <layer id="220" name="/blocks.1/mlp/mlp.1/Constant_2" type="Const" version="opset1"> + <data element_type="f32" shape="" offset="493592" size="4" /> + <output> + <port id="0" precision="FP32" names="/blocks.1/mlp/mlp.1/Constant_2_output_0" /> + </output> + </layer> + <layer id="221" name="/blocks.1/mlp/mlp.1/Mul_1" type="Multiply" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>2048</dim> + </port> + <port id="1" precision="FP32" /> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.1/mlp/mlp.1/Mul_1_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>2048</dim> + </port> + </output> + </layer> + <layer id="222" name="onnx::MatMul_807" type="Const" version="opset1"> + <data element_type="f32" shape="2048, 512" offset="27734188" size="4194304" /> + <output> + <port id="0" precision="FP32" names="onnx::MatMul_807"> + <dim>2048</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="223" name="/blocks.1/mlp/mlp.2/MatMul" type="MatMul" version="opset1"> + <data transpose_a="false" transpose_b="false" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>2048</dim> + </port> + <port id="1" precision="FP32"> + <dim>2048</dim> + <dim>512</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.1/mlp/mlp.2/MatMul_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="224" name="/blocks.1/mlp/mlp.2/Add" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32"> + <dim>512</dim> + </port> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.1/mlp/mlp.2/Add_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="225" name="/blocks.1/Add_1" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.1/Add_1_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="226" name="/blocks.2/attn_ln/Cast" type="Convert" version="opset1"> + <data destination_type="f32" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </input> + <output> + <port id="1" precision="FP32" names="/blocks.2/attn_ln/Cast_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="227" name="onnx::Add_832" type="Const" version="opset1"> + <data element_type="f32" shape="512" offset="31928492" size="2048" /> + <output> + <port id="0" precision="FP32" names="onnx::Add_832"> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="228" name="onnx::Add_809" type="Const" version="opset1"> + <data element_type="f32" shape="512" offset="31930540" size="2048" /> + <output> + <port id="0" precision="FP32" names="onnx::Add_809"> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="229" name="Constant_316" type="Const" version="opset1"> + <data element_type="i64" shape="" offset="6717492" size="8" /> + <output> + <port id="0" precision="I64" /> + </output> + </layer> + <layer id="230" name="Constant_315" type="Const" version="opset1"> + <data element_type="i64" shape="" offset="6717500" size="8" /> + <output> + <port id="0" precision="I64" /> + </output> + </layer> + <layer id="231" name="Constant_314" type="Const" version="opset1"> + <data element_type="i64" shape="" offset="493568" size="8" /> + <output> + <port id="0" precision="I64" /> + </output> + </layer> + <layer id="232" name="Range_317" type="Range" version="opset4"> + <data output_type="i64" /> + <input> + <port id="0" precision="I64" /> + <port id="1" precision="I64" /> + <port id="2" precision="I64" /> + </input> + <output> + <port id="3" precision="I64"> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="233" name="MVN_318" type="MVN" version="opset6"> + <data eps="9.9999997473787516e-06" normalize_variance="true" eps_mode="INSIDE_SQRT" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + <port id="1" precision="I64"> + <dim>1</dim> + </port> + </input> + <output> + <port id="2" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="234" name="blocks.2.attn_ln.weight" type="Const" version="opset1"> + <data element_type="f32" shape="512" offset="31932588" size="2048" /> + <output> + <port id="0" precision="FP32" names="blocks.2.attn_ln.weight"> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="235" name="Multiply_319" type="Multiply" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + <port id="1" precision="FP32"> + <dim>512</dim> + </port> + </input> + <output> + <port id="2" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="236" name="blocks.2.attn_ln.bias" type="Const" version="opset1"> + <data element_type="f32" shape="512" offset="31934636" size="2048" /> + <output> + <port id="0" precision="FP32" names="blocks.2.attn_ln.bias"> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="237" name="/blocks.2/attn_ln/LayerNormalization" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + <port id="1" precision="FP32"> + <dim>512</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.2/attn_ln/LayerNormalization_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="238" name="/blocks.2/attn_ln/Cast_1" type="Convert" version="opset1"> + <data destination_type="f32" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </input> + <output> + <port id="1" precision="FP32" names="/blocks.2/attn_ln/Cast_1_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="239" name="onnx::MatMul_810" type="Const" version="opset1"> + <data element_type="f32" shape="512, 512" offset="31936684" size="1048576" /> + <output> + <port id="0" precision="FP32" names="onnx::MatMul_810"> + <dim>512</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="240" name="/blocks.2/attn/query/MatMul" type="MatMul" version="opset1"> + <data transpose_a="false" transpose_b="false" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + <port id="1" precision="FP32"> + <dim>512</dim> + <dim>512</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.2/attn/query/MatMul_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="241" name="/blocks.2/attn/query/Add" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32"> + <dim>512</dim> + </port> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.2/attn/query/Add_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="242" name="/blocks.2/attn/Constant_2" type="Const" version="opset1"> + <data element_type="i64" shape="4" offset="7770180" size="32" /> + <output> + <port id="0" precision="I64" names="/blocks.2/attn/Constant_2_output_0"> + <dim>4</dim> + </port> + </output> + </layer> + <layer id="243" name="/blocks.2/attn/Reshape" type="Reshape" version="opset1"> + <data special_zero="true" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + <port id="1" precision="I64"> + <dim>4</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.2/attn/Reshape_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>8</dim> + <dim>64</dim> + </port> + </output> + </layer> + <layer id="244" name="Constant_332" type="Const" version="opset1"> + <data element_type="i64" shape="4" offset="7770212" size="32" /> + <output> + <port id="0" precision="I64"> + <dim>4</dim> + </port> + </output> + </layer> + <layer id="245" name="/blocks.2/attn/Transpose" type="Transpose" version="opset1"> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>8</dim> + <dim>64</dim> + </port> + <port id="1" precision="I64"> + <dim>4</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.2/attn/Transpose_output_0"> + <dim>1</dim> + <dim>8</dim> + <dim>1500</dim> + <dim>64</dim> + </port> + </output> + </layer> + <layer id="246" name="/blocks.2/attn/Constant" type="Const" version="opset1"> + <data element_type="f32" shape="" offset="7770244" size="4" /> + <output> + <port id="0" precision="FP32" names="/blocks.2/attn/Constant_output_0" /> + </output> + </layer> + <layer id="247" name="/blocks.2/attn/Constant_1" type="Const" version="opset1"> + <data element_type="f32" shape="" offset="7770248" size="4" /> + <output> + <port id="0" precision="FP32" names="/blocks.2/attn/Constant_1_output_0" /> + </output> + </layer> + <layer id="248" name="/blocks.2/attn/Pow" type="Power" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32" /> + <port id="1" precision="FP32" /> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.2/attn/Pow_output_0" /> + </output> + </layer> + <layer id="249" name="/blocks.2/attn/Mul" type="Multiply" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>8</dim> + <dim>1500</dim> + <dim>64</dim> + </port> + <port id="1" precision="FP32" /> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.2/attn/Mul_output_0"> + <dim>1</dim> + <dim>8</dim> + <dim>1500</dim> + <dim>64</dim> + </port> + </output> + </layer> + <layer id="250" name="onnx::MatMul_812" type="Const" version="opset1"> + <data element_type="f32" shape="512, 512" offset="32985260" size="1048576" /> + <output> + <port id="0" precision="FP32" names="onnx::MatMul_812"> + <dim>512</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="251" name="/blocks.2/attn/key/MatMul" type="MatMul" version="opset1"> + <data transpose_a="false" transpose_b="false" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + <port id="1" precision="FP32"> + <dim>512</dim> + <dim>512</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.2/attn/key/MatMul_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="252" name="/blocks.2/attn/Constant_3" type="Const" version="opset1"> + <data element_type="i64" shape="4" offset="7770180" size="32" /> + <output> + <port id="0" precision="I64" names="/blocks.2/attn/Constant_3_output_0"> + <dim>4</dim> + </port> + </output> + </layer> + <layer id="253" name="/blocks.2/attn/Reshape_1" type="Reshape" version="opset1"> + <data special_zero="true" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + <port id="1" precision="I64"> + <dim>4</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.2/attn/Reshape_1_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>8</dim> + <dim>64</dim> + </port> + </output> + </layer> + <layer id="254" name="Constant_337" type="Const" version="opset1"> + <data element_type="i64" shape="4" offset="8818828" size="32" /> + <output> + <port id="0" precision="I64"> + <dim>4</dim> + </port> + </output> + </layer> + <layer id="255" name="/blocks.2/attn/Transpose_1" type="Transpose" version="opset1"> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>8</dim> + <dim>64</dim> + </port> + <port id="1" precision="I64"> + <dim>4</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.2/attn/Transpose_1_output_0"> + <dim>1</dim> + <dim>8</dim> + <dim>64</dim> + <dim>1500</dim> + </port> + </output> + </layer> + <layer id="256" name="/blocks.2/attn/Mul_1" type="Multiply" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>8</dim> + <dim>64</dim> + <dim>1500</dim> + </port> + <port id="1" precision="FP32" /> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.2/attn/Mul_1_output_0"> + <dim>1</dim> + <dim>8</dim> + <dim>64</dim> + <dim>1500</dim> + </port> + </output> + </layer> + <layer id="257" name="/blocks.2/attn/MatMul" type="MatMul" version="opset1"> + <data transpose_a="false" transpose_b="false" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>8</dim> + <dim>1500</dim> + <dim>64</dim> + </port> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>8</dim> + <dim>64</dim> + <dim>1500</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.2/attn/MatMul_output_0"> + <dim>1</dim> + <dim>8</dim> + <dim>1500</dim> + <dim>1500</dim> + </port> + </output> + </layer> + <layer id="258" name="/blocks.2/attn/Cast" type="Convert" version="opset1"> + <data destination_type="f32" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>8</dim> + <dim>1500</dim> + <dim>1500</dim> + </port> + </input> + <output> + <port id="1" precision="FP32" names="/blocks.2/attn/Cast_output_0"> + <dim>1</dim> + <dim>8</dim> + <dim>1500</dim> + <dim>1500</dim> + </port> + </output> + </layer> + <layer id="259" name="/blocks.2/attn/Softmax" type="SoftMax" version="opset8"> + <data axis="-1" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>8</dim> + <dim>1500</dim> + <dim>1500</dim> + </port> + </input> + <output> + <port id="1" precision="FP32" names="/blocks.2/attn/Softmax_output_0"> + <dim>1</dim> + <dim>8</dim> + <dim>1500</dim> + <dim>1500</dim> + </port> + </output> + </layer> + <layer id="260" name="/blocks.2/attn/Cast_1" type="Convert" version="opset1"> + <data destination_type="f32" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>8</dim> + <dim>1500</dim> + <dim>1500</dim> + </port> + </input> + <output> + <port id="1" precision="FP32" names="/blocks.2/attn/Cast_1_output_0"> + <dim>1</dim> + <dim>8</dim> + <dim>1500</dim> + <dim>1500</dim> + </port> + </output> + </layer> + <layer id="261" name="onnx::Add_814" type="Const" version="opset1"> + <data element_type="f32" shape="512" offset="34033836" size="2048" /> + <output> + <port id="0" precision="FP32" names="onnx::Add_814"> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="262" name="onnx::MatMul_815" type="Const" version="opset1"> + <data element_type="f32" shape="512, 512" offset="34035884" size="1048576" /> + <output> + <port id="0" precision="FP32" names="onnx::MatMul_815"> + <dim>512</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="263" name="/blocks.2/attn/value/MatMul" type="MatMul" version="opset1"> + <data transpose_a="false" transpose_b="false" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + <port id="1" precision="FP32"> + <dim>512</dim> + <dim>512</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.2/attn/value/MatMul_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="264" name="/blocks.2/attn/value/Add" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32"> + <dim>512</dim> + </port> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.2/attn/value/Add_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="265" name="/blocks.2/attn/Constant_4" type="Const" version="opset1"> + <data element_type="i64" shape="4" offset="7770180" size="32" /> + <output> + <port id="0" precision="I64" names="/blocks.2/attn/Constant_4_output_0"> + <dim>4</dim> + </port> + </output> + </layer> + <layer id="266" name="/blocks.2/attn/Reshape_2" type="Reshape" version="opset1"> + <data special_zero="true" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + <port id="1" precision="I64"> + <dim>4</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.2/attn/Reshape_2_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>8</dim> + <dim>64</dim> + </port> + </output> + </layer> + <layer id="267" name="Constant_342" type="Const" version="opset1"> + <data element_type="i64" shape="4" offset="7770212" size="32" /> + <output> + <port id="0" precision="I64"> + <dim>4</dim> + </port> + </output> + </layer> + <layer id="268" name="/blocks.2/attn/Transpose_2" type="Transpose" version="opset1"> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>8</dim> + <dim>64</dim> + </port> + <port id="1" precision="I64"> + <dim>4</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.2/attn/Transpose_2_output_0"> + <dim>1</dim> + <dim>8</dim> + <dim>1500</dim> + <dim>64</dim> + </port> + </output> + </layer> + <layer id="269" name="/blocks.2/attn/MatMul_1" type="MatMul" version="opset1"> + <data transpose_a="false" transpose_b="false" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>8</dim> + <dim>1500</dim> + <dim>1500</dim> + </port> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>8</dim> + <dim>1500</dim> + <dim>64</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.2/attn/MatMul_1_output_0"> + <dim>1</dim> + <dim>8</dim> + <dim>1500</dim> + <dim>64</dim> + </port> + </output> + </layer> + <layer id="270" name="Constant_349" type="Const" version="opset1"> + <data element_type="i64" shape="4" offset="7770212" size="32" /> + <output> + <port id="0" precision="I64"> + <dim>4</dim> + </port> + </output> + </layer> + <layer id="271" name="/blocks.2/attn/Transpose_3" type="Transpose" version="opset1"> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>8</dim> + <dim>1500</dim> + <dim>64</dim> + </port> + <port id="1" precision="I64"> + <dim>4</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.2/attn/Transpose_3_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>8</dim> + <dim>64</dim> + </port> + </output> + </layer> + <layer id="272" name="/blocks.2/attn/Shape" type="ShapeOf" version="opset3"> + <data output_type="i64" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>8</dim> + <dim>64</dim> + </port> + </input> + <output> + <port id="1" precision="I64" names="/blocks.2/attn/Shape_output_0"> + <dim>4</dim> + </port> + </output> + </layer> + <layer id="273" name="/blocks.2/attn/Constant_6" type="Const" version="opset1"> + <data element_type="i64" shape="1" offset="6717500" size="8" /> + <output> + <port id="0" precision="I64" names="/blocks.2/attn/Constant_6_output_0"> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="274" name="/blocks.2/attn/Constant_7" type="Const" version="opset1"> + <data element_type="i64" shape="1" offset="493576" size="8" /> + <output> + <port id="0" precision="I64" names="/blocks.2/attn/Constant_7_output_0"> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="275" name="Constant_355" type="Const" version="opset1"> + <data element_type="i64" shape="1" offset="493568" size="8" /> + <output> + <port id="0" precision="I64"> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="276" name="ShapeOf_356" type="ShapeOf" version="opset3"> + <data output_type="i64" /> + <input> + <port id="0" precision="I64"> + <dim>1</dim> + </port> + </input> + <output> + <port id="1" precision="I64"> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="277" name="Broadcast_357" type="Broadcast" version="opset3"> + <data mode="numpy" /> + <input> + <port id="0" precision="I64"> + <dim>1</dim> + </port> + <port id="1" precision="I64"> + <dim>1</dim> + </port> + </input> + <output> + <port id="2" precision="I64"> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="278" name="/blocks.2/attn/Constant_5" type="Const" version="opset1"> + <data element_type="i64" shape="1" offset="6717500" size="8" /> + <output> + <port id="0" precision="I64" names="/blocks.2/attn/Constant_5_output_0"> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="279" name="/blocks.2/attn/Slice" type="Slice" version="opset8"> + <input> + <port id="0" precision="I64"> + <dim>4</dim> + </port> + <port id="1" precision="I64"> + <dim>1</dim> + </port> + <port id="2" precision="I64"> + <dim>1</dim> + </port> + <port id="3" precision="I64"> + <dim>1</dim> + </port> + <port id="4" precision="I64"> + <dim>1</dim> + </port> + </input> + <output> + <port id="5" precision="I64" names="/blocks.2/attn/Slice_output_0"> + <dim>2</dim> + </port> + </output> + </layer> + <layer id="280" name="/blocks.2/attn/Constant_8" type="Const" version="opset1"> + <data element_type="i64" shape="1" offset="6717492" size="8" /> + <output> + <port id="0" precision="I64" names="/blocks.2/attn/Constant_8_output_0"> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="281" name="/blocks.2/attn/Concat" type="Concat" version="opset1"> + <data axis="0" /> + <input> + <port id="0" precision="I64"> + <dim>2</dim> + </port> + <port id="1" precision="I64"> + <dim>1</dim> + </port> + </input> + <output> + <port id="2" precision="I64" names="/blocks.2/attn/Concat_output_0"> + <dim>3</dim> + </port> + </output> + </layer> + <layer id="282" name="/blocks.2/attn/Reshape_3" type="Reshape" version="opset1"> + <data special_zero="true" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>8</dim> + <dim>64</dim> + </port> + <port id="1" precision="I64"> + <dim>3</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.2/attn/Reshape_3_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="283" name="onnx::MatMul_833" type="Const" version="opset1"> + <data element_type="f32" shape="512, 512" offset="35084460" size="1048576" /> + <output> + <port id="0" precision="FP32" names="onnx::MatMul_833"> + <dim>512</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="284" name="/blocks.2/attn/out/MatMul" type="MatMul" version="opset1"> + <data transpose_a="false" transpose_b="false" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + <port id="1" precision="FP32"> + <dim>512</dim> + <dim>512</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.2/attn/out/MatMul_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="285" name="/blocks.2/attn/out/Add" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32"> + <dim>512</dim> + </port> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.2/attn/out/Add_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="286" name="/blocks.2/Add" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.2/Add_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="287" name="/blocks.2/mlp_ln/Cast" type="Convert" version="opset1"> + <data destination_type="f32" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </input> + <output> + <port id="1" precision="FP32" names="/blocks.2/mlp_ln/Cast_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="288" name="onnx::Add_838" type="Const" version="opset1"> + <data element_type="f32" shape="512" offset="36133036" size="2048" /> + <output> + <port id="0" precision="FP32" names="onnx::Add_838"> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="289" name="onnx::Add_835" type="Const" version="opset1"> + <data element_type="f32" shape="2048" offset="36135084" size="8192" /> + <output> + <port id="0" precision="FP32" names="onnx::Add_835"> + <dim>2048</dim> + </port> + </output> + </layer> + <layer id="290" name="Constant_375" type="Const" version="opset1"> + <data element_type="i64" shape="" offset="6717492" size="8" /> + <output> + <port id="0" precision="I64" /> + </output> + </layer> + <layer id="291" name="Constant_374" type="Const" version="opset1"> + <data element_type="i64" shape="" offset="6717500" size="8" /> + <output> + <port id="0" precision="I64" /> + </output> + </layer> + <layer id="292" name="Constant_373" type="Const" version="opset1"> + <data element_type="i64" shape="" offset="493568" size="8" /> + <output> + <port id="0" precision="I64" /> + </output> + </layer> + <layer id="293" name="Range_376" type="Range" version="opset4"> + <data output_type="i64" /> + <input> + <port id="0" precision="I64" /> + <port id="1" precision="I64" /> + <port id="2" precision="I64" /> + </input> + <output> + <port id="3" precision="I64"> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="294" name="MVN_377" type="MVN" version="opset6"> + <data eps="9.9999997473787516e-06" normalize_variance="true" eps_mode="INSIDE_SQRT" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + <port id="1" precision="I64"> + <dim>1</dim> + </port> + </input> + <output> + <port id="2" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="295" name="blocks.2.mlp_ln.weight" type="Const" version="opset1"> + <data element_type="f32" shape="512" offset="36143276" size="2048" /> + <output> + <port id="0" precision="FP32" names="blocks.2.mlp_ln.weight"> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="296" name="Multiply_378" type="Multiply" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + <port id="1" precision="FP32"> + <dim>512</dim> + </port> + </input> + <output> + <port id="2" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="297" name="blocks.2.mlp_ln.bias" type="Const" version="opset1"> + <data element_type="f32" shape="512" offset="36145324" size="2048" /> + <output> + <port id="0" precision="FP32" names="blocks.2.mlp_ln.bias"> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="298" name="/blocks.2/mlp_ln/LayerNormalization" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + <port id="1" precision="FP32"> + <dim>512</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.2/mlp_ln/LayerNormalization_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="299" name="/blocks.2/mlp_ln/Cast_1" type="Convert" version="opset1"> + <data destination_type="f32" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </input> + <output> + <port id="1" precision="FP32" names="/blocks.2/mlp_ln/Cast_1_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="300" name="onnx::MatMul_836" type="Const" version="opset1"> + <data element_type="f32" shape="512, 2048" offset="36147372" size="4194304" /> + <output> + <port id="0" precision="FP32" names="onnx::MatMul_836"> + <dim>512</dim> + <dim>2048</dim> + </port> + </output> + </layer> + <layer id="301" name="/blocks.2/mlp/mlp.0/MatMul" type="MatMul" version="opset1"> + <data transpose_a="false" transpose_b="false" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + <port id="1" precision="FP32"> + <dim>512</dim> + <dim>2048</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.2/mlp/mlp.0/MatMul_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>2048</dim> + </port> + </output> + </layer> + <layer id="302" name="/blocks.2/mlp/mlp.0/Add" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32"> + <dim>2048</dim> + </port> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>2048</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.2/mlp/mlp.0/Add_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>2048</dim> + </port> + </output> + </layer> + <layer id="303" name="/blocks.2/mlp/mlp.1/Constant" type="Const" version="opset1"> + <data element_type="f32" shape="" offset="493584" size="4" /> + <output> + <port id="0" precision="FP32" names="/blocks.2/mlp/mlp.1/Constant_output_0" /> + </output> + </layer> + <layer id="304" name="/blocks.2/mlp/mlp.1/Div" type="Divide" version="opset1"> + <data auto_broadcast="numpy" m_pythondiv="true" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>2048</dim> + </port> + <port id="1" precision="FP32" /> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.2/mlp/mlp.1/Div_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>2048</dim> + </port> + </output> + </layer> + <layer id="305" name="/blocks.2/mlp/mlp.1/Erf" type="Erf" version="opset1"> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>2048</dim> + </port> + </input> + <output> + <port id="1" precision="FP32" names="/blocks.2/mlp/mlp.1/Erf_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>2048</dim> + </port> + </output> + </layer> + <layer id="306" name="/blocks.2/mlp/mlp.1/Constant_1" type="Const" version="opset1"> + <data element_type="f32" shape="" offset="493588" size="4" /> + <output> + <port id="0" precision="FP32" names="/blocks.2/mlp/mlp.1/Constant_1_output_0" /> + </output> + </layer> + <layer id="307" name="/blocks.2/mlp/mlp.1/Add" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>2048</dim> + </port> + <port id="1" precision="FP32" /> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.2/mlp/mlp.1/Add_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>2048</dim> + </port> + </output> + </layer> + <layer id="308" name="/blocks.2/mlp/mlp.1/Mul" type="Multiply" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>2048</dim> + </port> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>2048</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.2/mlp/mlp.1/Mul_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>2048</dim> + </port> + </output> + </layer> + <layer id="309" name="/blocks.2/mlp/mlp.1/Constant_2" type="Const" version="opset1"> + <data element_type="f32" shape="" offset="493592" size="4" /> + <output> + <port id="0" precision="FP32" names="/blocks.2/mlp/mlp.1/Constant_2_output_0" /> + </output> + </layer> + <layer id="310" name="/blocks.2/mlp/mlp.1/Mul_1" type="Multiply" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>2048</dim> + </port> + <port id="1" precision="FP32" /> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.2/mlp/mlp.1/Mul_1_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>2048</dim> + </port> + </output> + </layer> + <layer id="311" name="onnx::MatMul_839" type="Const" version="opset1"> + <data element_type="f32" shape="2048, 512" offset="40341676" size="4194304" /> + <output> + <port id="0" precision="FP32" names="onnx::MatMul_839"> + <dim>2048</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="312" name="/blocks.2/mlp/mlp.2/MatMul" type="MatMul" version="opset1"> + <data transpose_a="false" transpose_b="false" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>2048</dim> + </port> + <port id="1" precision="FP32"> + <dim>2048</dim> + <dim>512</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.2/mlp/mlp.2/MatMul_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="313" name="/blocks.2/mlp/mlp.2/Add" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32"> + <dim>512</dim> + </port> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.2/mlp/mlp.2/Add_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="314" name="/blocks.2/Add_1" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.2/Add_1_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="315" name="/blocks.3/attn_ln/Cast" type="Convert" version="opset1"> + <data destination_type="f32" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </input> + <output> + <port id="1" precision="FP32" names="/blocks.3/attn_ln/Cast_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="316" name="onnx::Add_864" type="Const" version="opset1"> + <data element_type="f32" shape="512" offset="44535980" size="2048" /> + <output> + <port id="0" precision="FP32" names="onnx::Add_864"> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="317" name="onnx::Add_841" type="Const" version="opset1"> + <data element_type="f32" shape="512" offset="44538028" size="2048" /> + <output> + <port id="0" precision="FP32" names="onnx::Add_841"> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="318" name="Constant_397" type="Const" version="opset1"> + <data element_type="i64" shape="" offset="6717492" size="8" /> + <output> + <port id="0" precision="I64" /> + </output> + </layer> + <layer id="319" name="Constant_396" type="Const" version="opset1"> + <data element_type="i64" shape="" offset="6717500" size="8" /> + <output> + <port id="0" precision="I64" /> + </output> + </layer> + <layer id="320" name="Constant_395" type="Const" version="opset1"> + <data element_type="i64" shape="" offset="493568" size="8" /> + <output> + <port id="0" precision="I64" /> + </output> + </layer> + <layer id="321" name="Range_398" type="Range" version="opset4"> + <data output_type="i64" /> + <input> + <port id="0" precision="I64" /> + <port id="1" precision="I64" /> + <port id="2" precision="I64" /> + </input> + <output> + <port id="3" precision="I64"> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="322" name="MVN_399" type="MVN" version="opset6"> + <data eps="9.9999997473787516e-06" normalize_variance="true" eps_mode="INSIDE_SQRT" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + <port id="1" precision="I64"> + <dim>1</dim> + </port> + </input> + <output> + <port id="2" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="323" name="blocks.3.attn_ln.weight" type="Const" version="opset1"> + <data element_type="f32" shape="512" offset="44540076" size="2048" /> + <output> + <port id="0" precision="FP32" names="blocks.3.attn_ln.weight"> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="324" name="Multiply_400" type="Multiply" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + <port id="1" precision="FP32"> + <dim>512</dim> + </port> + </input> + <output> + <port id="2" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="325" name="blocks.3.attn_ln.bias" type="Const" version="opset1"> + <data element_type="f32" shape="512" offset="44542124" size="2048" /> + <output> + <port id="0" precision="FP32" names="blocks.3.attn_ln.bias"> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="326" name="/blocks.3/attn_ln/LayerNormalization" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + <port id="1" precision="FP32"> + <dim>512</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.3/attn_ln/LayerNormalization_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="327" name="/blocks.3/attn_ln/Cast_1" type="Convert" version="opset1"> + <data destination_type="f32" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </input> + <output> + <port id="1" precision="FP32" names="/blocks.3/attn_ln/Cast_1_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="328" name="onnx::MatMul_842" type="Const" version="opset1"> + <data element_type="f32" shape="512, 512" offset="44544172" size="1048576" /> + <output> + <port id="0" precision="FP32" names="onnx::MatMul_842"> + <dim>512</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="329" name="/blocks.3/attn/query/MatMul" type="MatMul" version="opset1"> + <data transpose_a="false" transpose_b="false" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + <port id="1" precision="FP32"> + <dim>512</dim> + <dim>512</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.3/attn/query/MatMul_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="330" name="/blocks.3/attn/query/Add" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32"> + <dim>512</dim> + </port> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.3/attn/query/Add_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="331" name="/blocks.3/attn/Constant_2" type="Const" version="opset1"> + <data element_type="i64" shape="4" offset="7770180" size="32" /> + <output> + <port id="0" precision="I64" names="/blocks.3/attn/Constant_2_output_0"> + <dim>4</dim> + </port> + </output> + </layer> + <layer id="332" name="/blocks.3/attn/Reshape" type="Reshape" version="opset1"> + <data special_zero="true" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + <port id="1" precision="I64"> + <dim>4</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.3/attn/Reshape_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>8</dim> + <dim>64</dim> + </port> + </output> + </layer> + <layer id="333" name="Constant_413" type="Const" version="opset1"> + <data element_type="i64" shape="4" offset="7770212" size="32" /> + <output> + <port id="0" precision="I64"> + <dim>4</dim> + </port> + </output> + </layer> + <layer id="334" name="/blocks.3/attn/Transpose" type="Transpose" version="opset1"> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>8</dim> + <dim>64</dim> + </port> + <port id="1" precision="I64"> + <dim>4</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.3/attn/Transpose_output_0"> + <dim>1</dim> + <dim>8</dim> + <dim>1500</dim> + <dim>64</dim> + </port> + </output> + </layer> + <layer id="335" name="/blocks.3/attn/Constant" type="Const" version="opset1"> + <data element_type="f32" shape="" offset="7770244" size="4" /> + <output> + <port id="0" precision="FP32" names="/blocks.3/attn/Constant_output_0" /> + </output> + </layer> + <layer id="336" name="/blocks.3/attn/Constant_1" type="Const" version="opset1"> + <data element_type="f32" shape="" offset="7770248" size="4" /> + <output> + <port id="0" precision="FP32" names="/blocks.3/attn/Constant_1_output_0" /> + </output> + </layer> + <layer id="337" name="/blocks.3/attn/Pow" type="Power" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32" /> + <port id="1" precision="FP32" /> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.3/attn/Pow_output_0" /> + </output> + </layer> + <layer id="338" name="/blocks.3/attn/Mul" type="Multiply" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>8</dim> + <dim>1500</dim> + <dim>64</dim> + </port> + <port id="1" precision="FP32" /> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.3/attn/Mul_output_0"> + <dim>1</dim> + <dim>8</dim> + <dim>1500</dim> + <dim>64</dim> + </port> + </output> + </layer> + <layer id="339" name="onnx::MatMul_844" type="Const" version="opset1"> + <data element_type="f32" shape="512, 512" offset="45592748" size="1048576" /> + <output> + <port id="0" precision="FP32" names="onnx::MatMul_844"> + <dim>512</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="340" name="/blocks.3/attn/key/MatMul" type="MatMul" version="opset1"> + <data transpose_a="false" transpose_b="false" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + <port id="1" precision="FP32"> + <dim>512</dim> + <dim>512</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.3/attn/key/MatMul_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="341" name="/blocks.3/attn/Constant_3" type="Const" version="opset1"> + <data element_type="i64" shape="4" offset="7770180" size="32" /> + <output> + <port id="0" precision="I64" names="/blocks.3/attn/Constant_3_output_0"> + <dim>4</dim> + </port> + </output> + </layer> + <layer id="342" name="/blocks.3/attn/Reshape_1" type="Reshape" version="opset1"> + <data special_zero="true" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + <port id="1" precision="I64"> + <dim>4</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.3/attn/Reshape_1_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>8</dim> + <dim>64</dim> + </port> + </output> + </layer> + <layer id="343" name="Constant_418" type="Const" version="opset1"> + <data element_type="i64" shape="4" offset="8818828" size="32" /> + <output> + <port id="0" precision="I64"> + <dim>4</dim> + </port> + </output> + </layer> + <layer id="344" name="/blocks.3/attn/Transpose_1" type="Transpose" version="opset1"> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>8</dim> + <dim>64</dim> + </port> + <port id="1" precision="I64"> + <dim>4</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.3/attn/Transpose_1_output_0"> + <dim>1</dim> + <dim>8</dim> + <dim>64</dim> + <dim>1500</dim> + </port> + </output> + </layer> + <layer id="345" name="/blocks.3/attn/Mul_1" type="Multiply" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>8</dim> + <dim>64</dim> + <dim>1500</dim> + </port> + <port id="1" precision="FP32" /> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.3/attn/Mul_1_output_0"> + <dim>1</dim> + <dim>8</dim> + <dim>64</dim> + <dim>1500</dim> + </port> + </output> + </layer> + <layer id="346" name="/blocks.3/attn/MatMul" type="MatMul" version="opset1"> + <data transpose_a="false" transpose_b="false" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>8</dim> + <dim>1500</dim> + <dim>64</dim> + </port> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>8</dim> + <dim>64</dim> + <dim>1500</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.3/attn/MatMul_output_0"> + <dim>1</dim> + <dim>8</dim> + <dim>1500</dim> + <dim>1500</dim> + </port> + </output> + </layer> + <layer id="347" name="/blocks.3/attn/Cast" type="Convert" version="opset1"> + <data destination_type="f32" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>8</dim> + <dim>1500</dim> + <dim>1500</dim> + </port> + </input> + <output> + <port id="1" precision="FP32" names="/blocks.3/attn/Cast_output_0"> + <dim>1</dim> + <dim>8</dim> + <dim>1500</dim> + <dim>1500</dim> + </port> + </output> + </layer> + <layer id="348" name="/blocks.3/attn/Softmax" type="SoftMax" version="opset8"> + <data axis="-1" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>8</dim> + <dim>1500</dim> + <dim>1500</dim> + </port> + </input> + <output> + <port id="1" precision="FP32" names="/blocks.3/attn/Softmax_output_0"> + <dim>1</dim> + <dim>8</dim> + <dim>1500</dim> + <dim>1500</dim> + </port> + </output> + </layer> + <layer id="349" name="/blocks.3/attn/Cast_1" type="Convert" version="opset1"> + <data destination_type="f32" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>8</dim> + <dim>1500</dim> + <dim>1500</dim> + </port> + </input> + <output> + <port id="1" precision="FP32" names="/blocks.3/attn/Cast_1_output_0"> + <dim>1</dim> + <dim>8</dim> + <dim>1500</dim> + <dim>1500</dim> + </port> + </output> + </layer> + <layer id="350" name="onnx::Add_846" type="Const" version="opset1"> + <data element_type="f32" shape="512" offset="46641324" size="2048" /> + <output> + <port id="0" precision="FP32" names="onnx::Add_846"> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="351" name="onnx::MatMul_847" type="Const" version="opset1"> + <data element_type="f32" shape="512, 512" offset="46643372" size="1048576" /> + <output> + <port id="0" precision="FP32" names="onnx::MatMul_847"> + <dim>512</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="352" name="/blocks.3/attn/value/MatMul" type="MatMul" version="opset1"> + <data transpose_a="false" transpose_b="false" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + <port id="1" precision="FP32"> + <dim>512</dim> + <dim>512</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.3/attn/value/MatMul_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="353" name="/blocks.3/attn/value/Add" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32"> + <dim>512</dim> + </port> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.3/attn/value/Add_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="354" name="/blocks.3/attn/Constant_4" type="Const" version="opset1"> + <data element_type="i64" shape="4" offset="7770180" size="32" /> + <output> + <port id="0" precision="I64" names="/blocks.3/attn/Constant_4_output_0"> + <dim>4</dim> + </port> + </output> + </layer> + <layer id="355" name="/blocks.3/attn/Reshape_2" type="Reshape" version="opset1"> + <data special_zero="true" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + <port id="1" precision="I64"> + <dim>4</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.3/attn/Reshape_2_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>8</dim> + <dim>64</dim> + </port> + </output> + </layer> + <layer id="356" name="Constant_423" type="Const" version="opset1"> + <data element_type="i64" shape="4" offset="7770212" size="32" /> + <output> + <port id="0" precision="I64"> + <dim>4</dim> + </port> + </output> + </layer> + <layer id="357" name="/blocks.3/attn/Transpose_2" type="Transpose" version="opset1"> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>8</dim> + <dim>64</dim> + </port> + <port id="1" precision="I64"> + <dim>4</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.3/attn/Transpose_2_output_0"> + <dim>1</dim> + <dim>8</dim> + <dim>1500</dim> + <dim>64</dim> + </port> + </output> + </layer> + <layer id="358" name="/blocks.3/attn/MatMul_1" type="MatMul" version="opset1"> + <data transpose_a="false" transpose_b="false" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>8</dim> + <dim>1500</dim> + <dim>1500</dim> + </port> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>8</dim> + <dim>1500</dim> + <dim>64</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.3/attn/MatMul_1_output_0"> + <dim>1</dim> + <dim>8</dim> + <dim>1500</dim> + <dim>64</dim> + </port> + </output> + </layer> + <layer id="359" name="Constant_430" type="Const" version="opset1"> + <data element_type="i64" shape="4" offset="7770212" size="32" /> + <output> + <port id="0" precision="I64"> + <dim>4</dim> + </port> + </output> + </layer> + <layer id="360" name="/blocks.3/attn/Transpose_3" type="Transpose" version="opset1"> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>8</dim> + <dim>1500</dim> + <dim>64</dim> + </port> + <port id="1" precision="I64"> + <dim>4</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.3/attn/Transpose_3_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>8</dim> + <dim>64</dim> + </port> + </output> + </layer> + <layer id="361" name="/blocks.3/attn/Shape" type="ShapeOf" version="opset3"> + <data output_type="i64" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>8</dim> + <dim>64</dim> + </port> + </input> + <output> + <port id="1" precision="I64" names="/blocks.3/attn/Shape_output_0"> + <dim>4</dim> + </port> + </output> + </layer> + <layer id="362" name="/blocks.3/attn/Constant_6" type="Const" version="opset1"> + <data element_type="i64" shape="1" offset="6717500" size="8" /> + <output> + <port id="0" precision="I64" names="/blocks.3/attn/Constant_6_output_0"> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="363" name="/blocks.3/attn/Constant_7" type="Const" version="opset1"> + <data element_type="i64" shape="1" offset="493576" size="8" /> + <output> + <port id="0" precision="I64" names="/blocks.3/attn/Constant_7_output_0"> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="364" name="Constant_436" type="Const" version="opset1"> + <data element_type="i64" shape="1" offset="493568" size="8" /> + <output> + <port id="0" precision="I64"> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="365" name="ShapeOf_437" type="ShapeOf" version="opset3"> + <data output_type="i64" /> + <input> + <port id="0" precision="I64"> + <dim>1</dim> + </port> + </input> + <output> + <port id="1" precision="I64"> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="366" name="Broadcast_438" type="Broadcast" version="opset3"> + <data mode="numpy" /> + <input> + <port id="0" precision="I64"> + <dim>1</dim> + </port> + <port id="1" precision="I64"> + <dim>1</dim> + </port> + </input> + <output> + <port id="2" precision="I64"> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="367" name="/blocks.3/attn/Constant_5" type="Const" version="opset1"> + <data element_type="i64" shape="1" offset="6717500" size="8" /> + <output> + <port id="0" precision="I64" names="/blocks.3/attn/Constant_5_output_0"> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="368" name="/blocks.3/attn/Slice" type="Slice" version="opset8"> + <input> + <port id="0" precision="I64"> + <dim>4</dim> + </port> + <port id="1" precision="I64"> + <dim>1</dim> + </port> + <port id="2" precision="I64"> + <dim>1</dim> + </port> + <port id="3" precision="I64"> + <dim>1</dim> + </port> + <port id="4" precision="I64"> + <dim>1</dim> + </port> + </input> + <output> + <port id="5" precision="I64" names="/blocks.3/attn/Slice_output_0"> + <dim>2</dim> + </port> + </output> + </layer> + <layer id="369" name="/blocks.3/attn/Constant_8" type="Const" version="opset1"> + <data element_type="i64" shape="1" offset="6717492" size="8" /> + <output> + <port id="0" precision="I64" names="/blocks.3/attn/Constant_8_output_0"> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="370" name="/blocks.3/attn/Concat" type="Concat" version="opset1"> + <data axis="0" /> + <input> + <port id="0" precision="I64"> + <dim>2</dim> + </port> + <port id="1" precision="I64"> + <dim>1</dim> + </port> + </input> + <output> + <port id="2" precision="I64" names="/blocks.3/attn/Concat_output_0"> + <dim>3</dim> + </port> + </output> + </layer> + <layer id="371" name="/blocks.3/attn/Reshape_3" type="Reshape" version="opset1"> + <data special_zero="true" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>8</dim> + <dim>64</dim> + </port> + <port id="1" precision="I64"> + <dim>3</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.3/attn/Reshape_3_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="372" name="onnx::MatMul_865" type="Const" version="opset1"> + <data element_type="f32" shape="512, 512" offset="47691948" size="1048576" /> + <output> + <port id="0" precision="FP32" names="onnx::MatMul_865"> + <dim>512</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="373" name="/blocks.3/attn/out/MatMul" type="MatMul" version="opset1"> + <data transpose_a="false" transpose_b="false" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + <port id="1" precision="FP32"> + <dim>512</dim> + <dim>512</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.3/attn/out/MatMul_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="374" name="/blocks.3/attn/out/Add" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32"> + <dim>512</dim> + </port> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.3/attn/out/Add_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="375" name="/blocks.3/Add" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.3/Add_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="376" name="/blocks.3/mlp_ln/Cast" type="Convert" version="opset1"> + <data destination_type="f32" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </input> + <output> + <port id="1" precision="FP32" names="/blocks.3/mlp_ln/Cast_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="377" name="onnx::Add_870" type="Const" version="opset1"> + <data element_type="f32" shape="512" offset="48740524" size="2048" /> + <output> + <port id="0" precision="FP32" names="onnx::Add_870"> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="378" name="onnx::Add_867" type="Const" version="opset1"> + <data element_type="f32" shape="2048" offset="48742572" size="8192" /> + <output> + <port id="0" precision="FP32" names="onnx::Add_867"> + <dim>2048</dim> + </port> + </output> + </layer> + <layer id="379" name="Constant_456" type="Const" version="opset1"> + <data element_type="i64" shape="" offset="6717492" size="8" /> + <output> + <port id="0" precision="I64" /> + </output> + </layer> + <layer id="380" name="Constant_455" type="Const" version="opset1"> + <data element_type="i64" shape="" offset="6717500" size="8" /> + <output> + <port id="0" precision="I64" /> + </output> + </layer> + <layer id="381" name="Constant_454" type="Const" version="opset1"> + <data element_type="i64" shape="" offset="493568" size="8" /> + <output> + <port id="0" precision="I64" /> + </output> + </layer> + <layer id="382" name="Range_457" type="Range" version="opset4"> + <data output_type="i64" /> + <input> + <port id="0" precision="I64" /> + <port id="1" precision="I64" /> + <port id="2" precision="I64" /> + </input> + <output> + <port id="3" precision="I64"> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="383" name="MVN_458" type="MVN" version="opset6"> + <data eps="9.9999997473787516e-06" normalize_variance="true" eps_mode="INSIDE_SQRT" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + <port id="1" precision="I64"> + <dim>1</dim> + </port> + </input> + <output> + <port id="2" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="384" name="blocks.3.mlp_ln.weight" type="Const" version="opset1"> + <data element_type="f32" shape="512" offset="48750764" size="2048" /> + <output> + <port id="0" precision="FP32" names="blocks.3.mlp_ln.weight"> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="385" name="Multiply_459" type="Multiply" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + <port id="1" precision="FP32"> + <dim>512</dim> + </port> + </input> + <output> + <port id="2" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="386" name="blocks.3.mlp_ln.bias" type="Const" version="opset1"> + <data element_type="f32" shape="512" offset="48752812" size="2048" /> + <output> + <port id="0" precision="FP32" names="blocks.3.mlp_ln.bias"> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="387" name="/blocks.3/mlp_ln/LayerNormalization" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + <port id="1" precision="FP32"> + <dim>512</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.3/mlp_ln/LayerNormalization_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="388" name="/blocks.3/mlp_ln/Cast_1" type="Convert" version="opset1"> + <data destination_type="f32" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </input> + <output> + <port id="1" precision="FP32" names="/blocks.3/mlp_ln/Cast_1_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="389" name="onnx::MatMul_868" type="Const" version="opset1"> + <data element_type="f32" shape="512, 2048" offset="48754860" size="4194304" /> + <output> + <port id="0" precision="FP32" names="onnx::MatMul_868"> + <dim>512</dim> + <dim>2048</dim> + </port> + </output> + </layer> + <layer id="390" name="/blocks.3/mlp/mlp.0/MatMul" type="MatMul" version="opset1"> + <data transpose_a="false" transpose_b="false" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + <port id="1" precision="FP32"> + <dim>512</dim> + <dim>2048</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.3/mlp/mlp.0/MatMul_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>2048</dim> + </port> + </output> + </layer> + <layer id="391" name="/blocks.3/mlp/mlp.0/Add" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32"> + <dim>2048</dim> + </port> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>2048</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.3/mlp/mlp.0/Add_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>2048</dim> + </port> + </output> + </layer> + <layer id="392" name="/blocks.3/mlp/mlp.1/Constant" type="Const" version="opset1"> + <data element_type="f32" shape="" offset="493584" size="4" /> + <output> + <port id="0" precision="FP32" names="/blocks.3/mlp/mlp.1/Constant_output_0" /> + </output> + </layer> + <layer id="393" name="/blocks.3/mlp/mlp.1/Div" type="Divide" version="opset1"> + <data auto_broadcast="numpy" m_pythondiv="true" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>2048</dim> + </port> + <port id="1" precision="FP32" /> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.3/mlp/mlp.1/Div_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>2048</dim> + </port> + </output> + </layer> + <layer id="394" name="/blocks.3/mlp/mlp.1/Erf" type="Erf" version="opset1"> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>2048</dim> + </port> + </input> + <output> + <port id="1" precision="FP32" names="/blocks.3/mlp/mlp.1/Erf_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>2048</dim> + </port> + </output> + </layer> + <layer id="395" name="/blocks.3/mlp/mlp.1/Constant_1" type="Const" version="opset1"> + <data element_type="f32" shape="" offset="493588" size="4" /> + <output> + <port id="0" precision="FP32" names="/blocks.3/mlp/mlp.1/Constant_1_output_0" /> + </output> + </layer> + <layer id="396" name="/blocks.3/mlp/mlp.1/Add" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>2048</dim> + </port> + <port id="1" precision="FP32" /> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.3/mlp/mlp.1/Add_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>2048</dim> + </port> + </output> + </layer> + <layer id="397" name="/blocks.3/mlp/mlp.1/Mul" type="Multiply" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>2048</dim> + </port> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>2048</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.3/mlp/mlp.1/Mul_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>2048</dim> + </port> + </output> + </layer> + <layer id="398" name="/blocks.3/mlp/mlp.1/Constant_2" type="Const" version="opset1"> + <data element_type="f32" shape="" offset="493592" size="4" /> + <output> + <port id="0" precision="FP32" names="/blocks.3/mlp/mlp.1/Constant_2_output_0" /> + </output> + </layer> + <layer id="399" name="/blocks.3/mlp/mlp.1/Mul_1" type="Multiply" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>2048</dim> + </port> + <port id="1" precision="FP32" /> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.3/mlp/mlp.1/Mul_1_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>2048</dim> + </port> + </output> + </layer> + <layer id="400" name="onnx::MatMul_871" type="Const" version="opset1"> + <data element_type="f32" shape="2048, 512" offset="52949164" size="4194304" /> + <output> + <port id="0" precision="FP32" names="onnx::MatMul_871"> + <dim>2048</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="401" name="/blocks.3/mlp/mlp.2/MatMul" type="MatMul" version="opset1"> + <data transpose_a="false" transpose_b="false" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>2048</dim> + </port> + <port id="1" precision="FP32"> + <dim>2048</dim> + <dim>512</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.3/mlp/mlp.2/MatMul_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="402" name="/blocks.3/mlp/mlp.2/Add" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32"> + <dim>512</dim> + </port> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.3/mlp/mlp.2/Add_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="403" name="/blocks.3/Add_1" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.3/Add_1_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="404" name="/blocks.4/attn_ln/Cast" type="Convert" version="opset1"> + <data destination_type="f32" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </input> + <output> + <port id="1" precision="FP32" names="/blocks.4/attn_ln/Cast_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="405" name="onnx::Add_896" type="Const" version="opset1"> + <data element_type="f32" shape="512" offset="57143468" size="2048" /> + <output> + <port id="0" precision="FP32" names="onnx::Add_896"> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="406" name="onnx::Add_873" type="Const" version="opset1"> + <data element_type="f32" shape="512" offset="57145516" size="2048" /> + <output> + <port id="0" precision="FP32" names="onnx::Add_873"> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="407" name="Constant_478" type="Const" version="opset1"> + <data element_type="i64" shape="" offset="6717492" size="8" /> + <output> + <port id="0" precision="I64" /> + </output> + </layer> + <layer id="408" name="Constant_477" type="Const" version="opset1"> + <data element_type="i64" shape="" offset="6717500" size="8" /> + <output> + <port id="0" precision="I64" /> + </output> + </layer> + <layer id="409" name="Constant_476" type="Const" version="opset1"> + <data element_type="i64" shape="" offset="493568" size="8" /> + <output> + <port id="0" precision="I64" /> + </output> + </layer> + <layer id="410" name="Range_479" type="Range" version="opset4"> + <data output_type="i64" /> + <input> + <port id="0" precision="I64" /> + <port id="1" precision="I64" /> + <port id="2" precision="I64" /> + </input> + <output> + <port id="3" precision="I64"> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="411" name="MVN_480" type="MVN" version="opset6"> + <data eps="9.9999997473787516e-06" normalize_variance="true" eps_mode="INSIDE_SQRT" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + <port id="1" precision="I64"> + <dim>1</dim> + </port> + </input> + <output> + <port id="2" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="412" name="blocks.4.attn_ln.weight" type="Const" version="opset1"> + <data element_type="f32" shape="512" offset="57147564" size="2048" /> + <output> + <port id="0" precision="FP32" names="blocks.4.attn_ln.weight"> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="413" name="Multiply_481" type="Multiply" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + <port id="1" precision="FP32"> + <dim>512</dim> + </port> + </input> + <output> + <port id="2" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="414" name="blocks.4.attn_ln.bias" type="Const" version="opset1"> + <data element_type="f32" shape="512" offset="57149612" size="2048" /> + <output> + <port id="0" precision="FP32" names="blocks.4.attn_ln.bias"> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="415" name="/blocks.4/attn_ln/LayerNormalization" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + <port id="1" precision="FP32"> + <dim>512</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.4/attn_ln/LayerNormalization_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="416" name="/blocks.4/attn_ln/Cast_1" type="Convert" version="opset1"> + <data destination_type="f32" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </input> + <output> + <port id="1" precision="FP32" names="/blocks.4/attn_ln/Cast_1_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="417" name="onnx::MatMul_874" type="Const" version="opset1"> + <data element_type="f32" shape="512, 512" offset="57151660" size="1048576" /> + <output> + <port id="0" precision="FP32" names="onnx::MatMul_874"> + <dim>512</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="418" name="/blocks.4/attn/query/MatMul" type="MatMul" version="opset1"> + <data transpose_a="false" transpose_b="false" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + <port id="1" precision="FP32"> + <dim>512</dim> + <dim>512</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.4/attn/query/MatMul_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="419" name="/blocks.4/attn/query/Add" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32"> + <dim>512</dim> + </port> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.4/attn/query/Add_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="420" name="/blocks.4/attn/Constant_2" type="Const" version="opset1"> + <data element_type="i64" shape="4" offset="7770180" size="32" /> + <output> + <port id="0" precision="I64" names="/blocks.4/attn/Constant_2_output_0"> + <dim>4</dim> + </port> + </output> + </layer> + <layer id="421" name="/blocks.4/attn/Reshape" type="Reshape" version="opset1"> + <data special_zero="true" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + <port id="1" precision="I64"> + <dim>4</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.4/attn/Reshape_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>8</dim> + <dim>64</dim> + </port> + </output> + </layer> + <layer id="422" name="Constant_494" type="Const" version="opset1"> + <data element_type="i64" shape="4" offset="7770212" size="32" /> + <output> + <port id="0" precision="I64"> + <dim>4</dim> + </port> + </output> + </layer> + <layer id="423" name="/blocks.4/attn/Transpose" type="Transpose" version="opset1"> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>8</dim> + <dim>64</dim> + </port> + <port id="1" precision="I64"> + <dim>4</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.4/attn/Transpose_output_0"> + <dim>1</dim> + <dim>8</dim> + <dim>1500</dim> + <dim>64</dim> + </port> + </output> + </layer> + <layer id="424" name="/blocks.4/attn/Constant" type="Const" version="opset1"> + <data element_type="f32" shape="" offset="7770244" size="4" /> + <output> + <port id="0" precision="FP32" names="/blocks.4/attn/Constant_output_0" /> + </output> + </layer> + <layer id="425" name="/blocks.4/attn/Constant_1" type="Const" version="opset1"> + <data element_type="f32" shape="" offset="7770248" size="4" /> + <output> + <port id="0" precision="FP32" names="/blocks.4/attn/Constant_1_output_0" /> + </output> + </layer> + <layer id="426" name="/blocks.4/attn/Pow" type="Power" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32" /> + <port id="1" precision="FP32" /> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.4/attn/Pow_output_0" /> + </output> + </layer> + <layer id="427" name="/blocks.4/attn/Mul" type="Multiply" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>8</dim> + <dim>1500</dim> + <dim>64</dim> + </port> + <port id="1" precision="FP32" /> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.4/attn/Mul_output_0"> + <dim>1</dim> + <dim>8</dim> + <dim>1500</dim> + <dim>64</dim> + </port> + </output> + </layer> + <layer id="428" name="onnx::MatMul_876" type="Const" version="opset1"> + <data element_type="f32" shape="512, 512" offset="58200236" size="1048576" /> + <output> + <port id="0" precision="FP32" names="onnx::MatMul_876"> + <dim>512</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="429" name="/blocks.4/attn/key/MatMul" type="MatMul" version="opset1"> + <data transpose_a="false" transpose_b="false" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + <port id="1" precision="FP32"> + <dim>512</dim> + <dim>512</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.4/attn/key/MatMul_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="430" name="/blocks.4/attn/Constant_3" type="Const" version="opset1"> + <data element_type="i64" shape="4" offset="7770180" size="32" /> + <output> + <port id="0" precision="I64" names="/blocks.4/attn/Constant_3_output_0"> + <dim>4</dim> + </port> + </output> + </layer> + <layer id="431" name="/blocks.4/attn/Reshape_1" type="Reshape" version="opset1"> + <data special_zero="true" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + <port id="1" precision="I64"> + <dim>4</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.4/attn/Reshape_1_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>8</dim> + <dim>64</dim> + </port> + </output> + </layer> + <layer id="432" name="Constant_499" type="Const" version="opset1"> + <data element_type="i64" shape="4" offset="8818828" size="32" /> + <output> + <port id="0" precision="I64"> + <dim>4</dim> + </port> + </output> + </layer> + <layer id="433" name="/blocks.4/attn/Transpose_1" type="Transpose" version="opset1"> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>8</dim> + <dim>64</dim> + </port> + <port id="1" precision="I64"> + <dim>4</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.4/attn/Transpose_1_output_0"> + <dim>1</dim> + <dim>8</dim> + <dim>64</dim> + <dim>1500</dim> + </port> + </output> + </layer> + <layer id="434" name="/blocks.4/attn/Mul_1" type="Multiply" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>8</dim> + <dim>64</dim> + <dim>1500</dim> + </port> + <port id="1" precision="FP32" /> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.4/attn/Mul_1_output_0"> + <dim>1</dim> + <dim>8</dim> + <dim>64</dim> + <dim>1500</dim> + </port> + </output> + </layer> + <layer id="435" name="/blocks.4/attn/MatMul" type="MatMul" version="opset1"> + <data transpose_a="false" transpose_b="false" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>8</dim> + <dim>1500</dim> + <dim>64</dim> + </port> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>8</dim> + <dim>64</dim> + <dim>1500</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.4/attn/MatMul_output_0"> + <dim>1</dim> + <dim>8</dim> + <dim>1500</dim> + <dim>1500</dim> + </port> + </output> + </layer> + <layer id="436" name="/blocks.4/attn/Cast" type="Convert" version="opset1"> + <data destination_type="f32" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>8</dim> + <dim>1500</dim> + <dim>1500</dim> + </port> + </input> + <output> + <port id="1" precision="FP32" names="/blocks.4/attn/Cast_output_0"> + <dim>1</dim> + <dim>8</dim> + <dim>1500</dim> + <dim>1500</dim> + </port> + </output> + </layer> + <layer id="437" name="/blocks.4/attn/Softmax" type="SoftMax" version="opset8"> + <data axis="-1" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>8</dim> + <dim>1500</dim> + <dim>1500</dim> + </port> + </input> + <output> + <port id="1" precision="FP32" names="/blocks.4/attn/Softmax_output_0"> + <dim>1</dim> + <dim>8</dim> + <dim>1500</dim> + <dim>1500</dim> + </port> + </output> + </layer> + <layer id="438" name="/blocks.4/attn/Cast_1" type="Convert" version="opset1"> + <data destination_type="f32" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>8</dim> + <dim>1500</dim> + <dim>1500</dim> + </port> + </input> + <output> + <port id="1" precision="FP32" names="/blocks.4/attn/Cast_1_output_0"> + <dim>1</dim> + <dim>8</dim> + <dim>1500</dim> + <dim>1500</dim> + </port> + </output> + </layer> + <layer id="439" name="onnx::Add_878" type="Const" version="opset1"> + <data element_type="f32" shape="512" offset="59248812" size="2048" /> + <output> + <port id="0" precision="FP32" names="onnx::Add_878"> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="440" name="onnx::MatMul_879" type="Const" version="opset1"> + <data element_type="f32" shape="512, 512" offset="59250860" size="1048576" /> + <output> + <port id="0" precision="FP32" names="onnx::MatMul_879"> + <dim>512</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="441" name="/blocks.4/attn/value/MatMul" type="MatMul" version="opset1"> + <data transpose_a="false" transpose_b="false" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + <port id="1" precision="FP32"> + <dim>512</dim> + <dim>512</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.4/attn/value/MatMul_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="442" name="/blocks.4/attn/value/Add" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32"> + <dim>512</dim> + </port> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.4/attn/value/Add_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="443" name="/blocks.4/attn/Constant_4" type="Const" version="opset1"> + <data element_type="i64" shape="4" offset="7770180" size="32" /> + <output> + <port id="0" precision="I64" names="/blocks.4/attn/Constant_4_output_0"> + <dim>4</dim> + </port> + </output> + </layer> + <layer id="444" name="/blocks.4/attn/Reshape_2" type="Reshape" version="opset1"> + <data special_zero="true" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + <port id="1" precision="I64"> + <dim>4</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.4/attn/Reshape_2_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>8</dim> + <dim>64</dim> + </port> + </output> + </layer> + <layer id="445" name="Constant_504" type="Const" version="opset1"> + <data element_type="i64" shape="4" offset="7770212" size="32" /> + <output> + <port id="0" precision="I64"> + <dim>4</dim> + </port> + </output> + </layer> + <layer id="446" name="/blocks.4/attn/Transpose_2" type="Transpose" version="opset1"> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>8</dim> + <dim>64</dim> + </port> + <port id="1" precision="I64"> + <dim>4</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.4/attn/Transpose_2_output_0"> + <dim>1</dim> + <dim>8</dim> + <dim>1500</dim> + <dim>64</dim> + </port> + </output> + </layer> + <layer id="447" name="/blocks.4/attn/MatMul_1" type="MatMul" version="opset1"> + <data transpose_a="false" transpose_b="false" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>8</dim> + <dim>1500</dim> + <dim>1500</dim> + </port> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>8</dim> + <dim>1500</dim> + <dim>64</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.4/attn/MatMul_1_output_0"> + <dim>1</dim> + <dim>8</dim> + <dim>1500</dim> + <dim>64</dim> + </port> + </output> + </layer> + <layer id="448" name="Constant_511" type="Const" version="opset1"> + <data element_type="i64" shape="4" offset="7770212" size="32" /> + <output> + <port id="0" precision="I64"> + <dim>4</dim> + </port> + </output> + </layer> + <layer id="449" name="/blocks.4/attn/Transpose_3" type="Transpose" version="opset1"> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>8</dim> + <dim>1500</dim> + <dim>64</dim> + </port> + <port id="1" precision="I64"> + <dim>4</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.4/attn/Transpose_3_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>8</dim> + <dim>64</dim> + </port> + </output> + </layer> + <layer id="450" name="/blocks.4/attn/Shape" type="ShapeOf" version="opset3"> + <data output_type="i64" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>8</dim> + <dim>64</dim> + </port> + </input> + <output> + <port id="1" precision="I64" names="/blocks.4/attn/Shape_output_0"> + <dim>4</dim> + </port> + </output> + </layer> + <layer id="451" name="/blocks.4/attn/Constant_6" type="Const" version="opset1"> + <data element_type="i64" shape="1" offset="6717500" size="8" /> + <output> + <port id="0" precision="I64" names="/blocks.4/attn/Constant_6_output_0"> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="452" name="/blocks.4/attn/Constant_7" type="Const" version="opset1"> + <data element_type="i64" shape="1" offset="493576" size="8" /> + <output> + <port id="0" precision="I64" names="/blocks.4/attn/Constant_7_output_0"> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="453" name="Constant_517" type="Const" version="opset1"> + <data element_type="i64" shape="1" offset="493568" size="8" /> + <output> + <port id="0" precision="I64"> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="454" name="ShapeOf_518" type="ShapeOf" version="opset3"> + <data output_type="i64" /> + <input> + <port id="0" precision="I64"> + <dim>1</dim> + </port> + </input> + <output> + <port id="1" precision="I64"> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="455" name="Broadcast_519" type="Broadcast" version="opset3"> + <data mode="numpy" /> + <input> + <port id="0" precision="I64"> + <dim>1</dim> + </port> + <port id="1" precision="I64"> + <dim>1</dim> + </port> + </input> + <output> + <port id="2" precision="I64"> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="456" name="/blocks.4/attn/Constant_5" type="Const" version="opset1"> + <data element_type="i64" shape="1" offset="6717500" size="8" /> + <output> + <port id="0" precision="I64" names="/blocks.4/attn/Constant_5_output_0"> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="457" name="/blocks.4/attn/Slice" type="Slice" version="opset8"> + <input> + <port id="0" precision="I64"> + <dim>4</dim> + </port> + <port id="1" precision="I64"> + <dim>1</dim> + </port> + <port id="2" precision="I64"> + <dim>1</dim> + </port> + <port id="3" precision="I64"> + <dim>1</dim> + </port> + <port id="4" precision="I64"> + <dim>1</dim> + </port> + </input> + <output> + <port id="5" precision="I64" names="/blocks.4/attn/Slice_output_0"> + <dim>2</dim> + </port> + </output> + </layer> + <layer id="458" name="/blocks.4/attn/Constant_8" type="Const" version="opset1"> + <data element_type="i64" shape="1" offset="6717492" size="8" /> + <output> + <port id="0" precision="I64" names="/blocks.4/attn/Constant_8_output_0"> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="459" name="/blocks.4/attn/Concat" type="Concat" version="opset1"> + <data axis="0" /> + <input> + <port id="0" precision="I64"> + <dim>2</dim> + </port> + <port id="1" precision="I64"> + <dim>1</dim> + </port> + </input> + <output> + <port id="2" precision="I64" names="/blocks.4/attn/Concat_output_0"> + <dim>3</dim> + </port> + </output> + </layer> + <layer id="460" name="/blocks.4/attn/Reshape_3" type="Reshape" version="opset1"> + <data special_zero="true" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>8</dim> + <dim>64</dim> + </port> + <port id="1" precision="I64"> + <dim>3</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.4/attn/Reshape_3_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="461" name="onnx::MatMul_897" type="Const" version="opset1"> + <data element_type="f32" shape="512, 512" offset="60299436" size="1048576" /> + <output> + <port id="0" precision="FP32" names="onnx::MatMul_897"> + <dim>512</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="462" name="/blocks.4/attn/out/MatMul" type="MatMul" version="opset1"> + <data transpose_a="false" transpose_b="false" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + <port id="1" precision="FP32"> + <dim>512</dim> + <dim>512</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.4/attn/out/MatMul_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="463" name="/blocks.4/attn/out/Add" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32"> + <dim>512</dim> + </port> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.4/attn/out/Add_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="464" name="/blocks.4/Add" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.4/Add_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="465" name="/blocks.4/mlp_ln/Cast" type="Convert" version="opset1"> + <data destination_type="f32" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </input> + <output> + <port id="1" precision="FP32" names="/blocks.4/mlp_ln/Cast_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="466" name="onnx::Add_902" type="Const" version="opset1"> + <data element_type="f32" shape="512" offset="61348012" size="2048" /> + <output> + <port id="0" precision="FP32" names="onnx::Add_902"> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="467" name="onnx::Add_899" type="Const" version="opset1"> + <data element_type="f32" shape="2048" offset="61350060" size="8192" /> + <output> + <port id="0" precision="FP32" names="onnx::Add_899"> + <dim>2048</dim> + </port> + </output> + </layer> + <layer id="468" name="Constant_537" type="Const" version="opset1"> + <data element_type="i64" shape="" offset="6717492" size="8" /> + <output> + <port id="0" precision="I64" /> + </output> + </layer> + <layer id="469" name="Constant_536" type="Const" version="opset1"> + <data element_type="i64" shape="" offset="6717500" size="8" /> + <output> + <port id="0" precision="I64" /> + </output> + </layer> + <layer id="470" name="Constant_535" type="Const" version="opset1"> + <data element_type="i64" shape="" offset="493568" size="8" /> + <output> + <port id="0" precision="I64" /> + </output> + </layer> + <layer id="471" name="Range_538" type="Range" version="opset4"> + <data output_type="i64" /> + <input> + <port id="0" precision="I64" /> + <port id="1" precision="I64" /> + <port id="2" precision="I64" /> + </input> + <output> + <port id="3" precision="I64"> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="472" name="MVN_539" type="MVN" version="opset6"> + <data eps="9.9999997473787516e-06" normalize_variance="true" eps_mode="INSIDE_SQRT" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + <port id="1" precision="I64"> + <dim>1</dim> + </port> + </input> + <output> + <port id="2" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="473" name="blocks.4.mlp_ln.weight" type="Const" version="opset1"> + <data element_type="f32" shape="512" offset="61358252" size="2048" /> + <output> + <port id="0" precision="FP32" names="blocks.4.mlp_ln.weight"> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="474" name="Multiply_540" type="Multiply" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + <port id="1" precision="FP32"> + <dim>512</dim> + </port> + </input> + <output> + <port id="2" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="475" name="blocks.4.mlp_ln.bias" type="Const" version="opset1"> + <data element_type="f32" shape="512" offset="61360300" size="2048" /> + <output> + <port id="0" precision="FP32" names="blocks.4.mlp_ln.bias"> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="476" name="/blocks.4/mlp_ln/LayerNormalization" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + <port id="1" precision="FP32"> + <dim>512</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.4/mlp_ln/LayerNormalization_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="477" name="/blocks.4/mlp_ln/Cast_1" type="Convert" version="opset1"> + <data destination_type="f32" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </input> + <output> + <port id="1" precision="FP32" names="/blocks.4/mlp_ln/Cast_1_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="478" name="onnx::MatMul_900" type="Const" version="opset1"> + <data element_type="f32" shape="512, 2048" offset="61362348" size="4194304" /> + <output> + <port id="0" precision="FP32" names="onnx::MatMul_900"> + <dim>512</dim> + <dim>2048</dim> + </port> + </output> + </layer> + <layer id="479" name="/blocks.4/mlp/mlp.0/MatMul" type="MatMul" version="opset1"> + <data transpose_a="false" transpose_b="false" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + <port id="1" precision="FP32"> + <dim>512</dim> + <dim>2048</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.4/mlp/mlp.0/MatMul_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>2048</dim> + </port> + </output> + </layer> + <layer id="480" name="/blocks.4/mlp/mlp.0/Add" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32"> + <dim>2048</dim> + </port> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>2048</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.4/mlp/mlp.0/Add_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>2048</dim> + </port> + </output> + </layer> + <layer id="481" name="/blocks.4/mlp/mlp.1/Constant" type="Const" version="opset1"> + <data element_type="f32" shape="" offset="493584" size="4" /> + <output> + <port id="0" precision="FP32" names="/blocks.4/mlp/mlp.1/Constant_output_0" /> + </output> + </layer> + <layer id="482" name="/blocks.4/mlp/mlp.1/Div" type="Divide" version="opset1"> + <data auto_broadcast="numpy" m_pythondiv="true" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>2048</dim> + </port> + <port id="1" precision="FP32" /> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.4/mlp/mlp.1/Div_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>2048</dim> + </port> + </output> + </layer> + <layer id="483" name="/blocks.4/mlp/mlp.1/Erf" type="Erf" version="opset1"> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>2048</dim> + </port> + </input> + <output> + <port id="1" precision="FP32" names="/blocks.4/mlp/mlp.1/Erf_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>2048</dim> + </port> + </output> + </layer> + <layer id="484" name="/blocks.4/mlp/mlp.1/Constant_1" type="Const" version="opset1"> + <data element_type="f32" shape="" offset="493588" size="4" /> + <output> + <port id="0" precision="FP32" names="/blocks.4/mlp/mlp.1/Constant_1_output_0" /> + </output> + </layer> + <layer id="485" name="/blocks.4/mlp/mlp.1/Add" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>2048</dim> + </port> + <port id="1" precision="FP32" /> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.4/mlp/mlp.1/Add_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>2048</dim> + </port> + </output> + </layer> + <layer id="486" name="/blocks.4/mlp/mlp.1/Mul" type="Multiply" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>2048</dim> + </port> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>2048</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.4/mlp/mlp.1/Mul_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>2048</dim> + </port> + </output> + </layer> + <layer id="487" name="/blocks.4/mlp/mlp.1/Constant_2" type="Const" version="opset1"> + <data element_type="f32" shape="" offset="493592" size="4" /> + <output> + <port id="0" precision="FP32" names="/blocks.4/mlp/mlp.1/Constant_2_output_0" /> + </output> + </layer> + <layer id="488" name="/blocks.4/mlp/mlp.1/Mul_1" type="Multiply" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>2048</dim> + </port> + <port id="1" precision="FP32" /> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.4/mlp/mlp.1/Mul_1_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>2048</dim> + </port> + </output> + </layer> + <layer id="489" name="onnx::MatMul_903" type="Const" version="opset1"> + <data element_type="f32" shape="2048, 512" offset="65556652" size="4194304" /> + <output> + <port id="0" precision="FP32" names="onnx::MatMul_903"> + <dim>2048</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="490" name="/blocks.4/mlp/mlp.2/MatMul" type="MatMul" version="opset1"> + <data transpose_a="false" transpose_b="false" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>2048</dim> + </port> + <port id="1" precision="FP32"> + <dim>2048</dim> + <dim>512</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.4/mlp/mlp.2/MatMul_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="491" name="/blocks.4/mlp/mlp.2/Add" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32"> + <dim>512</dim> + </port> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.4/mlp/mlp.2/Add_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="492" name="/blocks.4/Add_1" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.4/Add_1_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="493" name="/blocks.5/attn_ln/Cast" type="Convert" version="opset1"> + <data destination_type="f32" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </input> + <output> + <port id="1" precision="FP32" names="/blocks.5/attn_ln/Cast_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="494" name="onnx::Add_928" type="Const" version="opset1"> + <data element_type="f32" shape="512" offset="69750956" size="2048" /> + <output> + <port id="0" precision="FP32" names="onnx::Add_928"> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="495" name="onnx::Add_905" type="Const" version="opset1"> + <data element_type="f32" shape="512" offset="69753004" size="2048" /> + <output> + <port id="0" precision="FP32" names="onnx::Add_905"> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="496" name="Constant_559" type="Const" version="opset1"> + <data element_type="i64" shape="" offset="6717492" size="8" /> + <output> + <port id="0" precision="I64" /> + </output> + </layer> + <layer id="497" name="Constant_558" type="Const" version="opset1"> + <data element_type="i64" shape="" offset="6717500" size="8" /> + <output> + <port id="0" precision="I64" /> + </output> + </layer> + <layer id="498" name="Constant_557" type="Const" version="opset1"> + <data element_type="i64" shape="" offset="493568" size="8" /> + <output> + <port id="0" precision="I64" /> + </output> + </layer> + <layer id="499" name="Range_560" type="Range" version="opset4"> + <data output_type="i64" /> + <input> + <port id="0" precision="I64" /> + <port id="1" precision="I64" /> + <port id="2" precision="I64" /> + </input> + <output> + <port id="3" precision="I64"> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="500" name="MVN_561" type="MVN" version="opset6"> + <data eps="9.9999997473787516e-06" normalize_variance="true" eps_mode="INSIDE_SQRT" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + <port id="1" precision="I64"> + <dim>1</dim> + </port> + </input> + <output> + <port id="2" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="501" name="blocks.5.attn_ln.weight" type="Const" version="opset1"> + <data element_type="f32" shape="512" offset="69755052" size="2048" /> + <output> + <port id="0" precision="FP32" names="blocks.5.attn_ln.weight"> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="502" name="Multiply_562" type="Multiply" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + <port id="1" precision="FP32"> + <dim>512</dim> + </port> + </input> + <output> + <port id="2" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="503" name="blocks.5.attn_ln.bias" type="Const" version="opset1"> + <data element_type="f32" shape="512" offset="69757100" size="2048" /> + <output> + <port id="0" precision="FP32" names="blocks.5.attn_ln.bias"> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="504" name="/blocks.5/attn_ln/LayerNormalization" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + <port id="1" precision="FP32"> + <dim>512</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.5/attn_ln/LayerNormalization_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="505" name="/blocks.5/attn_ln/Cast_1" type="Convert" version="opset1"> + <data destination_type="f32" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </input> + <output> + <port id="1" precision="FP32" names="/blocks.5/attn_ln/Cast_1_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="506" name="onnx::MatMul_906" type="Const" version="opset1"> + <data element_type="f32" shape="512, 512" offset="69759148" size="1048576" /> + <output> + <port id="0" precision="FP32" names="onnx::MatMul_906"> + <dim>512</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="507" name="/blocks.5/attn/query/MatMul" type="MatMul" version="opset1"> + <data transpose_a="false" transpose_b="false" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + <port id="1" precision="FP32"> + <dim>512</dim> + <dim>512</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.5/attn/query/MatMul_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="508" name="/blocks.5/attn/query/Add" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32"> + <dim>512</dim> + </port> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.5/attn/query/Add_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="509" name="/blocks.5/attn/Constant_2" type="Const" version="opset1"> + <data element_type="i64" shape="4" offset="7770180" size="32" /> + <output> + <port id="0" precision="I64" names="/blocks.5/attn/Constant_2_output_0"> + <dim>4</dim> + </port> + </output> + </layer> + <layer id="510" name="/blocks.5/attn/Reshape" type="Reshape" version="opset1"> + <data special_zero="true" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + <port id="1" precision="I64"> + <dim>4</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.5/attn/Reshape_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>8</dim> + <dim>64</dim> + </port> + </output> + </layer> + <layer id="511" name="Constant_575" type="Const" version="opset1"> + <data element_type="i64" shape="4" offset="7770212" size="32" /> + <output> + <port id="0" precision="I64"> + <dim>4</dim> + </port> + </output> + </layer> + <layer id="512" name="/blocks.5/attn/Transpose" type="Transpose" version="opset1"> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>8</dim> + <dim>64</dim> + </port> + <port id="1" precision="I64"> + <dim>4</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.5/attn/Transpose_output_0"> + <dim>1</dim> + <dim>8</dim> + <dim>1500</dim> + <dim>64</dim> + </port> + </output> + </layer> + <layer id="513" name="/blocks.5/attn/Constant" type="Const" version="opset1"> + <data element_type="f32" shape="" offset="7770244" size="4" /> + <output> + <port id="0" precision="FP32" names="/blocks.5/attn/Constant_output_0" /> + </output> + </layer> + <layer id="514" name="/blocks.5/attn/Constant_1" type="Const" version="opset1"> + <data element_type="f32" shape="" offset="7770248" size="4" /> + <output> + <port id="0" precision="FP32" names="/blocks.5/attn/Constant_1_output_0" /> + </output> + </layer> + <layer id="515" name="/blocks.5/attn/Pow" type="Power" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32" /> + <port id="1" precision="FP32" /> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.5/attn/Pow_output_0" /> + </output> + </layer> + <layer id="516" name="/blocks.5/attn/Mul" type="Multiply" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>8</dim> + <dim>1500</dim> + <dim>64</dim> + </port> + <port id="1" precision="FP32" /> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.5/attn/Mul_output_0"> + <dim>1</dim> + <dim>8</dim> + <dim>1500</dim> + <dim>64</dim> + </port> + </output> + </layer> + <layer id="517" name="onnx::MatMul_908" type="Const" version="opset1"> + <data element_type="f32" shape="512, 512" offset="70807724" size="1048576" /> + <output> + <port id="0" precision="FP32" names="onnx::MatMul_908"> + <dim>512</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="518" name="/blocks.5/attn/key/MatMul" type="MatMul" version="opset1"> + <data transpose_a="false" transpose_b="false" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + <port id="1" precision="FP32"> + <dim>512</dim> + <dim>512</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.5/attn/key/MatMul_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="519" name="/blocks.5/attn/Constant_3" type="Const" version="opset1"> + <data element_type="i64" shape="4" offset="7770180" size="32" /> + <output> + <port id="0" precision="I64" names="/blocks.5/attn/Constant_3_output_0"> + <dim>4</dim> + </port> + </output> + </layer> + <layer id="520" name="/blocks.5/attn/Reshape_1" type="Reshape" version="opset1"> + <data special_zero="true" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + <port id="1" precision="I64"> + <dim>4</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.5/attn/Reshape_1_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>8</dim> + <dim>64</dim> + </port> + </output> + </layer> + <layer id="521" name="Constant_580" type="Const" version="opset1"> + <data element_type="i64" shape="4" offset="8818828" size="32" /> + <output> + <port id="0" precision="I64"> + <dim>4</dim> + </port> + </output> + </layer> + <layer id="522" name="/blocks.5/attn/Transpose_1" type="Transpose" version="opset1"> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>8</dim> + <dim>64</dim> + </port> + <port id="1" precision="I64"> + <dim>4</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.5/attn/Transpose_1_output_0"> + <dim>1</dim> + <dim>8</dim> + <dim>64</dim> + <dim>1500</dim> + </port> + </output> + </layer> + <layer id="523" name="/blocks.5/attn/Mul_1" type="Multiply" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>8</dim> + <dim>64</dim> + <dim>1500</dim> + </port> + <port id="1" precision="FP32" /> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.5/attn/Mul_1_output_0"> + <dim>1</dim> + <dim>8</dim> + <dim>64</dim> + <dim>1500</dim> + </port> + </output> + </layer> + <layer id="524" name="/blocks.5/attn/MatMul" type="MatMul" version="opset1"> + <data transpose_a="false" transpose_b="false" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>8</dim> + <dim>1500</dim> + <dim>64</dim> + </port> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>8</dim> + <dim>64</dim> + <dim>1500</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.5/attn/MatMul_output_0"> + <dim>1</dim> + <dim>8</dim> + <dim>1500</dim> + <dim>1500</dim> + </port> + </output> + </layer> + <layer id="525" name="/blocks.5/attn/Cast" type="Convert" version="opset1"> + <data destination_type="f32" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>8</dim> + <dim>1500</dim> + <dim>1500</dim> + </port> + </input> + <output> + <port id="1" precision="FP32" names="/blocks.5/attn/Cast_output_0"> + <dim>1</dim> + <dim>8</dim> + <dim>1500</dim> + <dim>1500</dim> + </port> + </output> + </layer> + <layer id="526" name="/blocks.5/attn/Softmax" type="SoftMax" version="opset8"> + <data axis="-1" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>8</dim> + <dim>1500</dim> + <dim>1500</dim> + </port> + </input> + <output> + <port id="1" precision="FP32" names="/blocks.5/attn/Softmax_output_0"> + <dim>1</dim> + <dim>8</dim> + <dim>1500</dim> + <dim>1500</dim> + </port> + </output> + </layer> + <layer id="527" name="/blocks.5/attn/Cast_1" type="Convert" version="opset1"> + <data destination_type="f32" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>8</dim> + <dim>1500</dim> + <dim>1500</dim> + </port> + </input> + <output> + <port id="1" precision="FP32" names="/blocks.5/attn/Cast_1_output_0"> + <dim>1</dim> + <dim>8</dim> + <dim>1500</dim> + <dim>1500</dim> + </port> + </output> + </layer> + <layer id="528" name="onnx::Add_910" type="Const" version="opset1"> + <data element_type="f32" shape="512" offset="71856300" size="2048" /> + <output> + <port id="0" precision="FP32" names="onnx::Add_910"> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="529" name="onnx::MatMul_911" type="Const" version="opset1"> + <data element_type="f32" shape="512, 512" offset="71858348" size="1048576" /> + <output> + <port id="0" precision="FP32" names="onnx::MatMul_911"> + <dim>512</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="530" name="/blocks.5/attn/value/MatMul" type="MatMul" version="opset1"> + <data transpose_a="false" transpose_b="false" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + <port id="1" precision="FP32"> + <dim>512</dim> + <dim>512</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.5/attn/value/MatMul_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="531" name="/blocks.5/attn/value/Add" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32"> + <dim>512</dim> + </port> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.5/attn/value/Add_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="532" name="/blocks.5/attn/Constant_4" type="Const" version="opset1"> + <data element_type="i64" shape="4" offset="7770180" size="32" /> + <output> + <port id="0" precision="I64" names="/blocks.5/attn/Constant_4_output_0"> + <dim>4</dim> + </port> + </output> + </layer> + <layer id="533" name="/blocks.5/attn/Reshape_2" type="Reshape" version="opset1"> + <data special_zero="true" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + <port id="1" precision="I64"> + <dim>4</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.5/attn/Reshape_2_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>8</dim> + <dim>64</dim> + </port> + </output> + </layer> + <layer id="534" name="Constant_585" type="Const" version="opset1"> + <data element_type="i64" shape="4" offset="7770212" size="32" /> + <output> + <port id="0" precision="I64"> + <dim>4</dim> + </port> + </output> + </layer> + <layer id="535" name="/blocks.5/attn/Transpose_2" type="Transpose" version="opset1"> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>8</dim> + <dim>64</dim> + </port> + <port id="1" precision="I64"> + <dim>4</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.5/attn/Transpose_2_output_0"> + <dim>1</dim> + <dim>8</dim> + <dim>1500</dim> + <dim>64</dim> + </port> + </output> + </layer> + <layer id="536" name="/blocks.5/attn/MatMul_1" type="MatMul" version="opset1"> + <data transpose_a="false" transpose_b="false" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>8</dim> + <dim>1500</dim> + <dim>1500</dim> + </port> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>8</dim> + <dim>1500</dim> + <dim>64</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.5/attn/MatMul_1_output_0"> + <dim>1</dim> + <dim>8</dim> + <dim>1500</dim> + <dim>64</dim> + </port> + </output> + </layer> + <layer id="537" name="Constant_592" type="Const" version="opset1"> + <data element_type="i64" shape="4" offset="7770212" size="32" /> + <output> + <port id="0" precision="I64"> + <dim>4</dim> + </port> + </output> + </layer> + <layer id="538" name="/blocks.5/attn/Transpose_3" type="Transpose" version="opset1"> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>8</dim> + <dim>1500</dim> + <dim>64</dim> + </port> + <port id="1" precision="I64"> + <dim>4</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.5/attn/Transpose_3_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>8</dim> + <dim>64</dim> + </port> + </output> + </layer> + <layer id="539" name="/blocks.5/attn/Shape" type="ShapeOf" version="opset3"> + <data output_type="i64" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>8</dim> + <dim>64</dim> + </port> + </input> + <output> + <port id="1" precision="I64" names="/blocks.5/attn/Shape_output_0"> + <dim>4</dim> + </port> + </output> + </layer> + <layer id="540" name="/blocks.5/attn/Constant_6" type="Const" version="opset1"> + <data element_type="i64" shape="1" offset="6717500" size="8" /> + <output> + <port id="0" precision="I64" names="/blocks.5/attn/Constant_6_output_0"> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="541" name="/blocks.5/attn/Constant_7" type="Const" version="opset1"> + <data element_type="i64" shape="1" offset="493576" size="8" /> + <output> + <port id="0" precision="I64" names="/blocks.5/attn/Constant_7_output_0"> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="542" name="Constant_598" type="Const" version="opset1"> + <data element_type="i64" shape="1" offset="493568" size="8" /> + <output> + <port id="0" precision="I64"> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="543" name="ShapeOf_599" type="ShapeOf" version="opset3"> + <data output_type="i64" /> + <input> + <port id="0" precision="I64"> + <dim>1</dim> + </port> + </input> + <output> + <port id="1" precision="I64"> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="544" name="Broadcast_600" type="Broadcast" version="opset3"> + <data mode="numpy" /> + <input> + <port id="0" precision="I64"> + <dim>1</dim> + </port> + <port id="1" precision="I64"> + <dim>1</dim> + </port> + </input> + <output> + <port id="2" precision="I64"> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="545" name="/blocks.5/attn/Constant_5" type="Const" version="opset1"> + <data element_type="i64" shape="1" offset="6717500" size="8" /> + <output> + <port id="0" precision="I64" names="/blocks.5/attn/Constant_5_output_0"> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="546" name="/blocks.5/attn/Slice" type="Slice" version="opset8"> + <input> + <port id="0" precision="I64"> + <dim>4</dim> + </port> + <port id="1" precision="I64"> + <dim>1</dim> + </port> + <port id="2" precision="I64"> + <dim>1</dim> + </port> + <port id="3" precision="I64"> + <dim>1</dim> + </port> + <port id="4" precision="I64"> + <dim>1</dim> + </port> + </input> + <output> + <port id="5" precision="I64" names="/blocks.5/attn/Slice_output_0"> + <dim>2</dim> + </port> + </output> + </layer> + <layer id="547" name="/blocks.5/attn/Constant_8" type="Const" version="opset1"> + <data element_type="i64" shape="1" offset="6717492" size="8" /> + <output> + <port id="0" precision="I64" names="/blocks.5/attn/Constant_8_output_0"> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="548" name="/blocks.5/attn/Concat" type="Concat" version="opset1"> + <data axis="0" /> + <input> + <port id="0" precision="I64"> + <dim>2</dim> + </port> + <port id="1" precision="I64"> + <dim>1</dim> + </port> + </input> + <output> + <port id="2" precision="I64" names="/blocks.5/attn/Concat_output_0"> + <dim>3</dim> + </port> + </output> + </layer> + <layer id="549" name="/blocks.5/attn/Reshape_3" type="Reshape" version="opset1"> + <data special_zero="true" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>8</dim> + <dim>64</dim> + </port> + <port id="1" precision="I64"> + <dim>3</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.5/attn/Reshape_3_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="550" name="onnx::MatMul_929" type="Const" version="opset1"> + <data element_type="f32" shape="512, 512" offset="72906924" size="1048576" /> + <output> + <port id="0" precision="FP32" names="onnx::MatMul_929"> + <dim>512</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="551" name="/blocks.5/attn/out/MatMul" type="MatMul" version="opset1"> + <data transpose_a="false" transpose_b="false" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + <port id="1" precision="FP32"> + <dim>512</dim> + <dim>512</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.5/attn/out/MatMul_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="552" name="/blocks.5/attn/out/Add" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32"> + <dim>512</dim> + </port> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.5/attn/out/Add_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="553" name="/blocks.5/Add" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.5/Add_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="554" name="/blocks.5/mlp_ln/Cast" type="Convert" version="opset1"> + <data destination_type="f32" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </input> + <output> + <port id="1" precision="FP32" names="/blocks.5/mlp_ln/Cast_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="555" name="onnx::Add_934" type="Const" version="opset1"> + <data element_type="f32" shape="512" offset="73955500" size="2048" /> + <output> + <port id="0" precision="FP32" names="onnx::Add_934"> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="556" name="onnx::Add_931" type="Const" version="opset1"> + <data element_type="f32" shape="2048" offset="73957548" size="8192" /> + <output> + <port id="0" precision="FP32" names="onnx::Add_931"> + <dim>2048</dim> + </port> + </output> + </layer> + <layer id="557" name="Constant_618" type="Const" version="opset1"> + <data element_type="i64" shape="" offset="6717492" size="8" /> + <output> + <port id="0" precision="I64" /> + </output> + </layer> + <layer id="558" name="Constant_617" type="Const" version="opset1"> + <data element_type="i64" shape="" offset="6717500" size="8" /> + <output> + <port id="0" precision="I64" /> + </output> + </layer> + <layer id="559" name="Constant_616" type="Const" version="opset1"> + <data element_type="i64" shape="" offset="493568" size="8" /> + <output> + <port id="0" precision="I64" /> + </output> + </layer> + <layer id="560" name="Range_619" type="Range" version="opset4"> + <data output_type="i64" /> + <input> + <port id="0" precision="I64" /> + <port id="1" precision="I64" /> + <port id="2" precision="I64" /> + </input> + <output> + <port id="3" precision="I64"> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="561" name="MVN_620" type="MVN" version="opset6"> + <data eps="9.9999997473787516e-06" normalize_variance="true" eps_mode="INSIDE_SQRT" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + <port id="1" precision="I64"> + <dim>1</dim> + </port> + </input> + <output> + <port id="2" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="562" name="blocks.5.mlp_ln.weight" type="Const" version="opset1"> + <data element_type="f32" shape="512" offset="73965740" size="2048" /> + <output> + <port id="0" precision="FP32" names="blocks.5.mlp_ln.weight"> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="563" name="Multiply_621" type="Multiply" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + <port id="1" precision="FP32"> + <dim>512</dim> + </port> + </input> + <output> + <port id="2" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="564" name="blocks.5.mlp_ln.bias" type="Const" version="opset1"> + <data element_type="f32" shape="512" offset="73967788" size="2048" /> + <output> + <port id="0" precision="FP32" names="blocks.5.mlp_ln.bias"> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="565" name="/blocks.5/mlp_ln/LayerNormalization" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + <port id="1" precision="FP32"> + <dim>512</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.5/mlp_ln/LayerNormalization_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="566" name="/blocks.5/mlp_ln/Cast_1" type="Convert" version="opset1"> + <data destination_type="f32" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </input> + <output> + <port id="1" precision="FP32" names="/blocks.5/mlp_ln/Cast_1_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="567" name="onnx::MatMul_932" type="Const" version="opset1"> + <data element_type="f32" shape="512, 2048" offset="73969836" size="4194304" /> + <output> + <port id="0" precision="FP32" names="onnx::MatMul_932"> + <dim>512</dim> + <dim>2048</dim> + </port> + </output> + </layer> + <layer id="568" name="/blocks.5/mlp/mlp.0/MatMul" type="MatMul" version="opset1"> + <data transpose_a="false" transpose_b="false" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + <port id="1" precision="FP32"> + <dim>512</dim> + <dim>2048</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.5/mlp/mlp.0/MatMul_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>2048</dim> + </port> + </output> + </layer> + <layer id="569" name="/blocks.5/mlp/mlp.0/Add" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32"> + <dim>2048</dim> + </port> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>2048</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.5/mlp/mlp.0/Add_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>2048</dim> + </port> + </output> + </layer> + <layer id="570" name="/blocks.5/mlp/mlp.1/Constant" type="Const" version="opset1"> + <data element_type="f32" shape="" offset="493584" size="4" /> + <output> + <port id="0" precision="FP32" names="/blocks.5/mlp/mlp.1/Constant_output_0" /> + </output> + </layer> + <layer id="571" name="/blocks.5/mlp/mlp.1/Div" type="Divide" version="opset1"> + <data auto_broadcast="numpy" m_pythondiv="true" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>2048</dim> + </port> + <port id="1" precision="FP32" /> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.5/mlp/mlp.1/Div_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>2048</dim> + </port> + </output> + </layer> + <layer id="572" name="/blocks.5/mlp/mlp.1/Erf" type="Erf" version="opset1"> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>2048</dim> + </port> + </input> + <output> + <port id="1" precision="FP32" names="/blocks.5/mlp/mlp.1/Erf_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>2048</dim> + </port> + </output> + </layer> + <layer id="573" name="/blocks.5/mlp/mlp.1/Constant_1" type="Const" version="opset1"> + <data element_type="f32" shape="" offset="493588" size="4" /> + <output> + <port id="0" precision="FP32" names="/blocks.5/mlp/mlp.1/Constant_1_output_0" /> + </output> + </layer> + <layer id="574" name="/blocks.5/mlp/mlp.1/Add" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>2048</dim> + </port> + <port id="1" precision="FP32" /> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.5/mlp/mlp.1/Add_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>2048</dim> + </port> + </output> + </layer> + <layer id="575" name="/blocks.5/mlp/mlp.1/Mul" type="Multiply" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>2048</dim> + </port> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>2048</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.5/mlp/mlp.1/Mul_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>2048</dim> + </port> + </output> + </layer> + <layer id="576" name="/blocks.5/mlp/mlp.1/Constant_2" type="Const" version="opset1"> + <data element_type="f32" shape="" offset="493592" size="4" /> + <output> + <port id="0" precision="FP32" names="/blocks.5/mlp/mlp.1/Constant_2_output_0" /> + </output> + </layer> + <layer id="577" name="/blocks.5/mlp/mlp.1/Mul_1" type="Multiply" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>2048</dim> + </port> + <port id="1" precision="FP32" /> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.5/mlp/mlp.1/Mul_1_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>2048</dim> + </port> + </output> + </layer> + <layer id="578" name="onnx::MatMul_935" type="Const" version="opset1"> + <data element_type="f32" shape="2048, 512" offset="78164140" size="4194304" /> + <output> + <port id="0" precision="FP32" names="onnx::MatMul_935"> + <dim>2048</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="579" name="/blocks.5/mlp/mlp.2/MatMul" type="MatMul" version="opset1"> + <data transpose_a="false" transpose_b="false" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>2048</dim> + </port> + <port id="1" precision="FP32"> + <dim>2048</dim> + <dim>512</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.5/mlp/mlp.2/MatMul_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="580" name="/blocks.5/mlp/mlp.2/Add" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32"> + <dim>512</dim> + </port> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.5/mlp/mlp.2/Add_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="581" name="/blocks.5/Add_1" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/blocks.5/Add_1_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="582" name="/ln_post/Cast" type="Convert" version="opset1"> + <data destination_type="f32" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </input> + <output> + <port id="1" precision="FP32" names="/ln_post/Cast_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="583" name="Constant_640" type="Const" version="opset1"> + <data element_type="i64" shape="" offset="6717492" size="8" /> + <output> + <port id="0" precision="I64" /> + </output> + </layer> + <layer id="584" name="Constant_639" type="Const" version="opset1"> + <data element_type="i64" shape="" offset="6717500" size="8" /> + <output> + <port id="0" precision="I64" /> + </output> + </layer> + <layer id="585" name="Constant_638" type="Const" version="opset1"> + <data element_type="i64" shape="" offset="493568" size="8" /> + <output> + <port id="0" precision="I64" /> + </output> + </layer> + <layer id="586" name="Range_641" type="Range" version="opset4"> + <data output_type="i64" /> + <input> + <port id="0" precision="I64" /> + <port id="1" precision="I64" /> + <port id="2" precision="I64" /> + </input> + <output> + <port id="3" precision="I64"> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="587" name="MVN_642" type="MVN" version="opset6"> + <data eps="9.9999997473787516e-06" normalize_variance="true" eps_mode="INSIDE_SQRT" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + <port id="1" precision="I64"> + <dim>1</dim> + </port> + </input> + <output> + <port id="2" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="588" name="ln_post.weight" type="Const" version="opset1"> + <data element_type="f32" shape="512" offset="82358444" size="2048" /> + <output> + <port id="0" precision="FP32" names="ln_post.weight"> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="589" name="Multiply_643" type="Multiply" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + <port id="1" precision="FP32"> + <dim>512</dim> + </port> + </input> + <output> + <port id="2" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="590" name="ln_post.bias" type="Const" version="opset1"> + <data element_type="f32" shape="512" offset="82360492" size="2048" /> + <output> + <port id="0" precision="FP32" names="ln_post.bias"> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="591" name="/ln_post/LayerNormalization" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + <port id="1" precision="FP32"> + <dim>512</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/ln_post/LayerNormalization_output_0"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="592" name="output_features" type="Convert" version="opset1"> + <data destination_type="f32" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </input> + <output> + <port id="1" precision="FP32" names="output_features"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="593" name="output_features/sink_port_0" type="Result" version="opset1"> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1500</dim> + <dim>512</dim> + </port> + </input> + </layer> + </layers> + <edges> + <edge from-layer="0" from-port="0" to-layer="2" to-port="0" /> + <edge from-layer="1" from-port="0" to-layer="2" to-port="1" /> + <edge from-layer="2" from-port="2" to-layer="6" to-port="0" /> + <edge from-layer="2" from-port="2" to-layer="13" to-port="0" /> + <edge from-layer="3" from-port="0" to-layer="5" to-port="0" /> + <edge from-layer="3" from-port="0" to-layer="12" to-port="0" /> + <edge from-layer="4" from-port="0" to-layer="10" to-port="0" /> + <edge from-layer="4" from-port="0" to-layer="11" to-port="0" /> + <edge from-layer="5" from-port="1" to-layer="11" to-port="1" /> + <edge from-layer="6" from-port="1" to-layer="7" to-port="0" /> + <edge from-layer="7" from-port="1" to-layer="9" to-port="0" /> + <edge from-layer="8" from-port="0" to-layer="9" to-port="1" /> + <edge from-layer="9" from-port="2" to-layer="10" to-port="1" /> + <edge from-layer="10" from-port="2" to-layer="11" to-port="2" /> + <edge from-layer="11" from-port="3" to-layer="12" to-port="1" /> + <edge from-layer="12" from-port="2" to-layer="13" to-port="1" /> + <edge from-layer="13" from-port="2" to-layer="19" to-port="0" /> + <edge from-layer="13" from-port="2" to-layer="15" to-port="0" /> + <edge from-layer="14" from-port="0" to-layer="15" to-port="1" /> + <edge from-layer="15" from-port="2" to-layer="16" to-port="0" /> + <edge from-layer="16" from-port="1" to-layer="18" to-port="0" /> + <edge from-layer="17" from-port="0" to-layer="18" to-port="1" /> + <edge from-layer="18" from-port="2" to-layer="19" to-port="1" /> + <edge from-layer="19" from-port="2" to-layer="21" to-port="0" /> + <edge from-layer="20" from-port="0" to-layer="21" to-port="1" /> + <edge from-layer="21" from-port="2" to-layer="23" to-port="0" /> + <edge from-layer="22" from-port="0" to-layer="23" to-port="1" /> + <edge from-layer="23" from-port="2" to-layer="27" to-port="0" /> + <edge from-layer="23" from-port="2" to-layer="34" to-port="0" /> + <edge from-layer="24" from-port="0" to-layer="26" to-port="0" /> + <edge from-layer="24" from-port="0" to-layer="33" to-port="0" /> + <edge from-layer="25" from-port="0" to-layer="31" to-port="0" /> + <edge from-layer="25" from-port="0" to-layer="32" to-port="0" /> + <edge from-layer="26" from-port="1" to-layer="32" to-port="1" /> + <edge from-layer="27" from-port="1" to-layer="28" to-port="0" /> + <edge from-layer="28" from-port="1" to-layer="30" to-port="0" /> + <edge from-layer="29" from-port="0" to-layer="30" to-port="1" /> + <edge from-layer="30" from-port="2" to-layer="31" to-port="1" /> + <edge from-layer="31" from-port="2" to-layer="32" to-port="2" /> + <edge from-layer="32" from-port="3" to-layer="33" to-port="1" /> + <edge from-layer="33" from-port="2" to-layer="34" to-port="1" /> + <edge from-layer="34" from-port="2" to-layer="36" to-port="0" /> + <edge from-layer="34" from-port="2" to-layer="40" to-port="0" /> + <edge from-layer="35" from-port="0" to-layer="36" to-port="1" /> + <edge from-layer="36" from-port="2" to-layer="37" to-port="0" /> + <edge from-layer="37" from-port="1" to-layer="39" to-port="0" /> + <edge from-layer="38" from-port="0" to-layer="39" to-port="1" /> + <edge from-layer="39" from-port="2" to-layer="40" to-port="1" /> + <edge from-layer="40" from-port="2" to-layer="42" to-port="0" /> + <edge from-layer="41" from-port="0" to-layer="42" to-port="1" /> + <edge from-layer="42" from-port="2" to-layer="44" to-port="0" /> + <edge from-layer="43" from-port="0" to-layer="44" to-port="1" /> + <edge from-layer="44" from-port="2" to-layer="46" to-port="0" /> + <edge from-layer="45" from-port="0" to-layer="46" to-port="1" /> + <edge from-layer="46" from-port="2" to-layer="47" to-port="0" /> + <edge from-layer="47" from-port="1" to-layer="48" to-port="0" /> + <edge from-layer="48" from-port="1" to-layer="55" to-port="0" /> + <edge from-layer="48" from-port="1" to-layer="108" to-port="0" /> + <edge from-layer="49" from-port="0" to-layer="107" to-port="0" /> + <edge from-layer="50" from-port="0" to-layer="63" to-port="0" /> + <edge from-layer="51" from-port="0" to-layer="54" to-port="0" /> + <edge from-layer="52" from-port="0" to-layer="54" to-port="1" /> + <edge from-layer="53" from-port="0" to-layer="54" to-port="2" /> + <edge from-layer="54" from-port="3" to-layer="55" to-port="1" /> + <edge from-layer="55" from-port="2" to-layer="57" to-port="0" /> + <edge from-layer="56" from-port="0" to-layer="57" to-port="1" /> + <edge from-layer="57" from-port="2" to-layer="59" to-port="0" /> + <edge from-layer="58" from-port="0" to-layer="59" to-port="1" /> + <edge from-layer="59" from-port="2" to-layer="60" to-port="0" /> + <edge from-layer="60" from-port="1" to-layer="62" to-port="0" /> + <edge from-layer="60" from-port="1" to-layer="73" to-port="0" /> + <edge from-layer="60" from-port="1" to-layer="85" to-port="0" /> + <edge from-layer="61" from-port="0" to-layer="62" to-port="1" /> + <edge from-layer="62" from-port="2" to-layer="63" to-port="1" /> + <edge from-layer="63" from-port="2" to-layer="65" to-port="0" /> + <edge from-layer="64" from-port="0" to-layer="65" to-port="1" /> + <edge from-layer="65" from-port="2" to-layer="67" to-port="0" /> + <edge from-layer="66" from-port="0" to-layer="67" to-port="1" /> + <edge from-layer="67" from-port="2" to-layer="71" to-port="0" /> + <edge from-layer="68" from-port="0" to-layer="70" to-port="0" /> + <edge from-layer="69" from-port="0" to-layer="70" to-port="1" /> + <edge from-layer="70" from-port="2" to-layer="78" to-port="1" /> + <edge from-layer="70" from-port="2" to-layer="71" to-port="1" /> + <edge from-layer="71" from-port="2" to-layer="79" to-port="0" /> + <edge from-layer="72" from-port="0" to-layer="73" to-port="1" /> + <edge from-layer="73" from-port="2" to-layer="75" to-port="0" /> + <edge from-layer="74" from-port="0" to-layer="75" to-port="1" /> + <edge from-layer="75" from-port="2" to-layer="77" to-port="0" /> + <edge from-layer="76" from-port="0" to-layer="77" to-port="1" /> + <edge from-layer="77" from-port="2" to-layer="78" to-port="0" /> + <edge from-layer="78" from-port="2" to-layer="79" to-port="1" /> + <edge from-layer="79" from-port="2" to-layer="80" to-port="0" /> + <edge from-layer="80" from-port="1" to-layer="81" to-port="0" /> + <edge from-layer="81" from-port="1" to-layer="82" to-port="0" /> + <edge from-layer="82" from-port="1" to-layer="91" to-port="0" /> + <edge from-layer="83" from-port="0" to-layer="86" to-port="0" /> + <edge from-layer="84" from-port="0" to-layer="85" to-port="1" /> + <edge from-layer="85" from-port="2" to-layer="86" to-port="1" /> + <edge from-layer="86" from-port="2" to-layer="88" to-port="0" /> + <edge from-layer="87" from-port="0" to-layer="88" to-port="1" /> + <edge from-layer="88" from-port="2" to-layer="90" to-port="0" /> + <edge from-layer="89" from-port="0" to-layer="90" to-port="1" /> + <edge from-layer="90" from-port="2" to-layer="91" to-port="1" /> + <edge from-layer="91" from-port="2" to-layer="93" to-port="0" /> + <edge from-layer="92" from-port="0" to-layer="93" to-port="1" /> + <edge from-layer="93" from-port="2" to-layer="94" to-port="0" /> + <edge from-layer="93" from-port="2" to-layer="104" to-port="0" /> + <edge from-layer="94" from-port="1" to-layer="101" to-port="0" /> + <edge from-layer="95" from-port="0" to-layer="101" to-port="1" /> + <edge from-layer="95" from-port="0" to-layer="98" to-port="0" /> + <edge from-layer="96" from-port="0" to-layer="101" to-port="2" /> + <edge from-layer="97" from-port="0" to-layer="99" to-port="0" /> + <edge from-layer="98" from-port="1" to-layer="99" to-port="1" /> + <edge from-layer="99" from-port="2" to-layer="101" to-port="3" /> + <edge from-layer="100" from-port="0" to-layer="101" to-port="4" /> + <edge from-layer="101" from-port="5" to-layer="103" to-port="0" /> + <edge from-layer="102" from-port="0" to-layer="103" to-port="1" /> + <edge from-layer="103" from-port="2" to-layer="104" to-port="1" /> + <edge from-layer="104" from-port="2" to-layer="106" to-port="0" /> + <edge from-layer="105" from-port="0" to-layer="106" to-port="1" /> + <edge from-layer="106" from-port="2" to-layer="107" to-port="1" /> + <edge from-layer="107" from-port="2" to-layer="108" to-port="1" /> + <edge from-layer="108" from-port="2" to-layer="109" to-port="0" /> + <edge from-layer="109" from-port="1" to-layer="136" to-port="0" /> + <edge from-layer="109" from-port="1" to-layer="116" to-port="0" /> + <edge from-layer="110" from-port="0" to-layer="135" to-port="0" /> + <edge from-layer="111" from-port="0" to-layer="124" to-port="0" /> + <edge from-layer="112" from-port="0" to-layer="115" to-port="0" /> + <edge from-layer="113" from-port="0" to-layer="115" to-port="1" /> + <edge from-layer="114" from-port="0" to-layer="115" to-port="2" /> + <edge from-layer="115" from-port="3" to-layer="116" to-port="1" /> + <edge from-layer="116" from-port="2" to-layer="118" to-port="0" /> + <edge from-layer="117" from-port="0" to-layer="118" to-port="1" /> + <edge from-layer="118" from-port="2" to-layer="120" to-port="0" /> + <edge from-layer="119" from-port="0" to-layer="120" to-port="1" /> + <edge from-layer="120" from-port="2" to-layer="121" to-port="0" /> + <edge from-layer="121" from-port="1" to-layer="123" to-port="0" /> + <edge from-layer="122" from-port="0" to-layer="123" to-port="1" /> + <edge from-layer="123" from-port="2" to-layer="124" to-port="1" /> + <edge from-layer="124" from-port="2" to-layer="126" to-port="0" /> + <edge from-layer="124" from-port="2" to-layer="130" to-port="0" /> + <edge from-layer="125" from-port="0" to-layer="126" to-port="1" /> + <edge from-layer="126" from-port="2" to-layer="127" to-port="0" /> + <edge from-layer="127" from-port="1" to-layer="129" to-port="0" /> + <edge from-layer="128" from-port="0" to-layer="129" to-port="1" /> + <edge from-layer="129" from-port="2" to-layer="130" to-port="1" /> + <edge from-layer="130" from-port="2" to-layer="132" to-port="0" /> + <edge from-layer="131" from-port="0" to-layer="132" to-port="1" /> + <edge from-layer="132" from-port="2" to-layer="134" to-port="0" /> + <edge from-layer="133" from-port="0" to-layer="134" to-port="1" /> + <edge from-layer="134" from-port="2" to-layer="135" to-port="1" /> + <edge from-layer="135" from-port="2" to-layer="136" to-port="1" /> + <edge from-layer="136" from-port="2" to-layer="137" to-port="0" /> + <edge from-layer="137" from-port="1" to-layer="144" to-port="0" /> + <edge from-layer="137" from-port="1" to-layer="197" to-port="0" /> + <edge from-layer="138" from-port="0" to-layer="196" to-port="0" /> + <edge from-layer="139" from-port="0" to-layer="152" to-port="0" /> + <edge from-layer="140" from-port="0" to-layer="143" to-port="0" /> + <edge from-layer="141" from-port="0" to-layer="143" to-port="1" /> + <edge from-layer="142" from-port="0" to-layer="143" to-port="2" /> + <edge from-layer="143" from-port="3" to-layer="144" to-port="1" /> + <edge from-layer="144" from-port="2" to-layer="146" to-port="0" /> + <edge from-layer="145" from-port="0" to-layer="146" to-port="1" /> + <edge from-layer="146" from-port="2" to-layer="148" to-port="0" /> + <edge from-layer="147" from-port="0" to-layer="148" to-port="1" /> + <edge from-layer="148" from-port="2" to-layer="149" to-port="0" /> + <edge from-layer="149" from-port="1" to-layer="151" to-port="0" /> + <edge from-layer="149" from-port="1" to-layer="174" to-port="0" /> + <edge from-layer="149" from-port="1" to-layer="162" to-port="0" /> + <edge from-layer="150" from-port="0" to-layer="151" to-port="1" /> + <edge from-layer="151" from-port="2" to-layer="152" to-port="1" /> + <edge from-layer="152" from-port="2" to-layer="154" to-port="0" /> + <edge from-layer="153" from-port="0" to-layer="154" to-port="1" /> + <edge from-layer="154" from-port="2" to-layer="156" to-port="0" /> + <edge from-layer="155" from-port="0" to-layer="156" to-port="1" /> + <edge from-layer="156" from-port="2" to-layer="160" to-port="0" /> + <edge from-layer="157" from-port="0" to-layer="159" to-port="0" /> + <edge from-layer="158" from-port="0" to-layer="159" to-port="1" /> + <edge from-layer="159" from-port="2" to-layer="160" to-port="1" /> + <edge from-layer="159" from-port="2" to-layer="167" to-port="1" /> + <edge from-layer="160" from-port="2" to-layer="168" to-port="0" /> + <edge from-layer="161" from-port="0" to-layer="162" to-port="1" /> + <edge from-layer="162" from-port="2" to-layer="164" to-port="0" /> + <edge from-layer="163" from-port="0" to-layer="164" to-port="1" /> + <edge from-layer="164" from-port="2" to-layer="166" to-port="0" /> + <edge from-layer="165" from-port="0" to-layer="166" to-port="1" /> + <edge from-layer="166" from-port="2" to-layer="167" to-port="0" /> + <edge from-layer="167" from-port="2" to-layer="168" to-port="1" /> + <edge from-layer="168" from-port="2" to-layer="169" to-port="0" /> + <edge from-layer="169" from-port="1" to-layer="170" to-port="0" /> + <edge from-layer="170" from-port="1" to-layer="171" to-port="0" /> + <edge from-layer="171" from-port="1" to-layer="180" to-port="0" /> + <edge from-layer="172" from-port="0" to-layer="175" to-port="0" /> + <edge from-layer="173" from-port="0" to-layer="174" to-port="1" /> + <edge from-layer="174" from-port="2" to-layer="175" to-port="1" /> + <edge from-layer="175" from-port="2" to-layer="177" to-port="0" /> + <edge from-layer="176" from-port="0" to-layer="177" to-port="1" /> + <edge from-layer="177" from-port="2" to-layer="179" to-port="0" /> + <edge from-layer="178" from-port="0" to-layer="179" to-port="1" /> + <edge from-layer="179" from-port="2" to-layer="180" to-port="1" /> + <edge from-layer="180" from-port="2" to-layer="182" to-port="0" /> + <edge from-layer="181" from-port="0" to-layer="182" to-port="1" /> + <edge from-layer="182" from-port="2" to-layer="183" to-port="0" /> + <edge from-layer="182" from-port="2" to-layer="193" to-port="0" /> + <edge from-layer="183" from-port="1" to-layer="190" to-port="0" /> + <edge from-layer="184" from-port="0" to-layer="190" to-port="1" /> + <edge from-layer="184" from-port="0" to-layer="187" to-port="0" /> + <edge from-layer="185" from-port="0" to-layer="190" to-port="2" /> + <edge from-layer="186" from-port="0" to-layer="188" to-port="0" /> + <edge from-layer="187" from-port="1" to-layer="188" to-port="1" /> + <edge from-layer="188" from-port="2" to-layer="190" to-port="3" /> + <edge from-layer="189" from-port="0" to-layer="190" to-port="4" /> + <edge from-layer="190" from-port="5" to-layer="192" to-port="0" /> + <edge from-layer="191" from-port="0" to-layer="192" to-port="1" /> + <edge from-layer="192" from-port="2" to-layer="193" to-port="1" /> + <edge from-layer="193" from-port="2" to-layer="195" to-port="0" /> + <edge from-layer="194" from-port="0" to-layer="195" to-port="1" /> + <edge from-layer="195" from-port="2" to-layer="196" to-port="1" /> + <edge from-layer="196" from-port="2" to-layer="197" to-port="1" /> + <edge from-layer="197" from-port="2" to-layer="198" to-port="0" /> + <edge from-layer="198" from-port="1" to-layer="225" to-port="0" /> + <edge from-layer="198" from-port="1" to-layer="205" to-port="0" /> + <edge from-layer="199" from-port="0" to-layer="224" to-port="0" /> + <edge from-layer="200" from-port="0" to-layer="213" to-port="0" /> + <edge from-layer="201" from-port="0" to-layer="204" to-port="0" /> + <edge from-layer="202" from-port="0" to-layer="204" to-port="1" /> + <edge from-layer="203" from-port="0" to-layer="204" to-port="2" /> + <edge from-layer="204" from-port="3" to-layer="205" to-port="1" /> + <edge from-layer="205" from-port="2" to-layer="207" to-port="0" /> + <edge from-layer="206" from-port="0" to-layer="207" to-port="1" /> + <edge from-layer="207" from-port="2" to-layer="209" to-port="0" /> + <edge from-layer="208" from-port="0" to-layer="209" to-port="1" /> + <edge from-layer="209" from-port="2" to-layer="210" to-port="0" /> + <edge from-layer="210" from-port="1" to-layer="212" to-port="0" /> + <edge from-layer="211" from-port="0" to-layer="212" to-port="1" /> + <edge from-layer="212" from-port="2" to-layer="213" to-port="1" /> + <edge from-layer="213" from-port="2" to-layer="219" to-port="0" /> + <edge from-layer="213" from-port="2" to-layer="215" to-port="0" /> + <edge from-layer="214" from-port="0" to-layer="215" to-port="1" /> + <edge from-layer="215" from-port="2" to-layer="216" to-port="0" /> + <edge from-layer="216" from-port="1" to-layer="218" to-port="0" /> + <edge from-layer="217" from-port="0" to-layer="218" to-port="1" /> + <edge from-layer="218" from-port="2" to-layer="219" to-port="1" /> + <edge from-layer="219" from-port="2" to-layer="221" to-port="0" /> + <edge from-layer="220" from-port="0" to-layer="221" to-port="1" /> + <edge from-layer="221" from-port="2" to-layer="223" to-port="0" /> + <edge from-layer="222" from-port="0" to-layer="223" to-port="1" /> + <edge from-layer="223" from-port="2" to-layer="224" to-port="1" /> + <edge from-layer="224" from-port="2" to-layer="225" to-port="1" /> + <edge from-layer="225" from-port="2" to-layer="226" to-port="0" /> + <edge from-layer="226" from-port="1" to-layer="286" to-port="0" /> + <edge from-layer="226" from-port="1" to-layer="233" to-port="0" /> + <edge from-layer="227" from-port="0" to-layer="285" to-port="0" /> + <edge from-layer="228" from-port="0" to-layer="241" to-port="0" /> + <edge from-layer="229" from-port="0" to-layer="232" to-port="0" /> + <edge from-layer="230" from-port="0" to-layer="232" to-port="1" /> + <edge from-layer="231" from-port="0" to-layer="232" to-port="2" /> + <edge from-layer="232" from-port="3" to-layer="233" to-port="1" /> + <edge from-layer="233" from-port="2" to-layer="235" to-port="0" /> + <edge from-layer="234" from-port="0" to-layer="235" to-port="1" /> + <edge from-layer="235" from-port="2" to-layer="237" to-port="0" /> + <edge from-layer="236" from-port="0" to-layer="237" to-port="1" /> + <edge from-layer="237" from-port="2" to-layer="238" to-port="0" /> + <edge from-layer="238" from-port="1" to-layer="240" to-port="0" /> + <edge from-layer="238" from-port="1" to-layer="263" to-port="0" /> + <edge from-layer="238" from-port="1" to-layer="251" to-port="0" /> + <edge from-layer="239" from-port="0" to-layer="240" to-port="1" /> + <edge from-layer="240" from-port="2" to-layer="241" to-port="1" /> + <edge from-layer="241" from-port="2" to-layer="243" to-port="0" /> + <edge from-layer="242" from-port="0" to-layer="243" to-port="1" /> + <edge from-layer="243" from-port="2" to-layer="245" to-port="0" /> + <edge from-layer="244" from-port="0" to-layer="245" to-port="1" /> + <edge from-layer="245" from-port="2" to-layer="249" to-port="0" /> + <edge from-layer="246" from-port="0" to-layer="248" to-port="0" /> + <edge from-layer="247" from-port="0" to-layer="248" to-port="1" /> + <edge from-layer="248" from-port="2" to-layer="249" to-port="1" /> + <edge from-layer="248" from-port="2" to-layer="256" to-port="1" /> + <edge from-layer="249" from-port="2" to-layer="257" to-port="0" /> + <edge from-layer="250" from-port="0" to-layer="251" to-port="1" /> + <edge from-layer="251" from-port="2" to-layer="253" to-port="0" /> + <edge from-layer="252" from-port="0" to-layer="253" to-port="1" /> + <edge from-layer="253" from-port="2" to-layer="255" to-port="0" /> + <edge from-layer="254" from-port="0" to-layer="255" to-port="1" /> + <edge from-layer="255" from-port="2" to-layer="256" to-port="0" /> + <edge from-layer="256" from-port="2" to-layer="257" to-port="1" /> + <edge from-layer="257" from-port="2" to-layer="258" to-port="0" /> + <edge from-layer="258" from-port="1" to-layer="259" to-port="0" /> + <edge from-layer="259" from-port="1" to-layer="260" to-port="0" /> + <edge from-layer="260" from-port="1" to-layer="269" to-port="0" /> + <edge from-layer="261" from-port="0" to-layer="264" to-port="0" /> + <edge from-layer="262" from-port="0" to-layer="263" to-port="1" /> + <edge from-layer="263" from-port="2" to-layer="264" to-port="1" /> + <edge from-layer="264" from-port="2" to-layer="266" to-port="0" /> + <edge from-layer="265" from-port="0" to-layer="266" to-port="1" /> + <edge from-layer="266" from-port="2" to-layer="268" to-port="0" /> + <edge from-layer="267" from-port="0" to-layer="268" to-port="1" /> + <edge from-layer="268" from-port="2" to-layer="269" to-port="1" /> + <edge from-layer="269" from-port="2" to-layer="271" to-port="0" /> + <edge from-layer="270" from-port="0" to-layer="271" to-port="1" /> + <edge from-layer="271" from-port="2" to-layer="272" to-port="0" /> + <edge from-layer="271" from-port="2" to-layer="282" to-port="0" /> + <edge from-layer="272" from-port="1" to-layer="279" to-port="0" /> + <edge from-layer="273" from-port="0" to-layer="276" to-port="0" /> + <edge from-layer="273" from-port="0" to-layer="279" to-port="1" /> + <edge from-layer="274" from-port="0" to-layer="279" to-port="2" /> + <edge from-layer="275" from-port="0" to-layer="277" to-port="0" /> + <edge from-layer="276" from-port="1" to-layer="277" to-port="1" /> + <edge from-layer="277" from-port="2" to-layer="279" to-port="3" /> + <edge from-layer="278" from-port="0" to-layer="279" to-port="4" /> + <edge from-layer="279" from-port="5" to-layer="281" to-port="0" /> + <edge from-layer="280" from-port="0" to-layer="281" to-port="1" /> + <edge from-layer="281" from-port="2" to-layer="282" to-port="1" /> + <edge from-layer="282" from-port="2" to-layer="284" to-port="0" /> + <edge from-layer="283" from-port="0" to-layer="284" to-port="1" /> + <edge from-layer="284" from-port="2" to-layer="285" to-port="1" /> + <edge from-layer="285" from-port="2" to-layer="286" to-port="1" /> + <edge from-layer="286" from-port="2" to-layer="287" to-port="0" /> + <edge from-layer="287" from-port="1" to-layer="294" to-port="0" /> + <edge from-layer="287" from-port="1" to-layer="314" to-port="0" /> + <edge from-layer="288" from-port="0" to-layer="313" to-port="0" /> + <edge from-layer="289" from-port="0" to-layer="302" to-port="0" /> + <edge from-layer="290" from-port="0" to-layer="293" to-port="0" /> + <edge from-layer="291" from-port="0" to-layer="293" to-port="1" /> + <edge from-layer="292" from-port="0" to-layer="293" to-port="2" /> + <edge from-layer="293" from-port="3" to-layer="294" to-port="1" /> + <edge from-layer="294" from-port="2" to-layer="296" to-port="0" /> + <edge from-layer="295" from-port="0" to-layer="296" to-port="1" /> + <edge from-layer="296" from-port="2" to-layer="298" to-port="0" /> + <edge from-layer="297" from-port="0" to-layer="298" to-port="1" /> + <edge from-layer="298" from-port="2" to-layer="299" to-port="0" /> + <edge from-layer="299" from-port="1" to-layer="301" to-port="0" /> + <edge from-layer="300" from-port="0" to-layer="301" to-port="1" /> + <edge from-layer="301" from-port="2" to-layer="302" to-port="1" /> + <edge from-layer="302" from-port="2" to-layer="304" to-port="0" /> + <edge from-layer="302" from-port="2" to-layer="308" to-port="0" /> + <edge from-layer="303" from-port="0" to-layer="304" to-port="1" /> + <edge from-layer="304" from-port="2" to-layer="305" to-port="0" /> + <edge from-layer="305" from-port="1" to-layer="307" to-port="0" /> + <edge from-layer="306" from-port="0" to-layer="307" to-port="1" /> + <edge from-layer="307" from-port="2" to-layer="308" to-port="1" /> + <edge from-layer="308" from-port="2" to-layer="310" to-port="0" /> + <edge from-layer="309" from-port="0" to-layer="310" to-port="1" /> + <edge from-layer="310" from-port="2" to-layer="312" to-port="0" /> + <edge from-layer="311" from-port="0" to-layer="312" to-port="1" /> + <edge from-layer="312" from-port="2" to-layer="313" to-port="1" /> + <edge from-layer="313" from-port="2" to-layer="314" to-port="1" /> + <edge from-layer="314" from-port="2" to-layer="315" to-port="0" /> + <edge from-layer="315" from-port="1" to-layer="375" to-port="0" /> + <edge from-layer="315" from-port="1" to-layer="322" to-port="0" /> + <edge from-layer="316" from-port="0" to-layer="374" to-port="0" /> + <edge from-layer="317" from-port="0" to-layer="330" to-port="0" /> + <edge from-layer="318" from-port="0" to-layer="321" to-port="0" /> + <edge from-layer="319" from-port="0" to-layer="321" to-port="1" /> + <edge from-layer="320" from-port="0" to-layer="321" to-port="2" /> + <edge from-layer="321" from-port="3" to-layer="322" to-port="1" /> + <edge from-layer="322" from-port="2" to-layer="324" to-port="0" /> + <edge from-layer="323" from-port="0" to-layer="324" to-port="1" /> + <edge from-layer="324" from-port="2" to-layer="326" to-port="0" /> + <edge from-layer="325" from-port="0" to-layer="326" to-port="1" /> + <edge from-layer="326" from-port="2" to-layer="327" to-port="0" /> + <edge from-layer="327" from-port="1" to-layer="329" to-port="0" /> + <edge from-layer="327" from-port="1" to-layer="352" to-port="0" /> + <edge from-layer="327" from-port="1" to-layer="340" to-port="0" /> + <edge from-layer="328" from-port="0" to-layer="329" to-port="1" /> + <edge from-layer="329" from-port="2" to-layer="330" to-port="1" /> + <edge from-layer="330" from-port="2" to-layer="332" to-port="0" /> + <edge from-layer="331" from-port="0" to-layer="332" to-port="1" /> + <edge from-layer="332" from-port="2" to-layer="334" to-port="0" /> + <edge from-layer="333" from-port="0" to-layer="334" to-port="1" /> + <edge from-layer="334" from-port="2" to-layer="338" to-port="0" /> + <edge from-layer="335" from-port="0" to-layer="337" to-port="0" /> + <edge from-layer="336" from-port="0" to-layer="337" to-port="1" /> + <edge from-layer="337" from-port="2" to-layer="338" to-port="1" /> + <edge from-layer="337" from-port="2" to-layer="345" to-port="1" /> + <edge from-layer="338" from-port="2" to-layer="346" to-port="0" /> + <edge from-layer="339" from-port="0" to-layer="340" to-port="1" /> + <edge from-layer="340" from-port="2" to-layer="342" to-port="0" /> + <edge from-layer="341" from-port="0" to-layer="342" to-port="1" /> + <edge from-layer="342" from-port="2" to-layer="344" to-port="0" /> + <edge from-layer="343" from-port="0" to-layer="344" to-port="1" /> + <edge from-layer="344" from-port="2" to-layer="345" to-port="0" /> + <edge from-layer="345" from-port="2" to-layer="346" to-port="1" /> + <edge from-layer="346" from-port="2" to-layer="347" to-port="0" /> + <edge from-layer="347" from-port="1" to-layer="348" to-port="0" /> + <edge from-layer="348" from-port="1" to-layer="349" to-port="0" /> + <edge from-layer="349" from-port="1" to-layer="358" to-port="0" /> + <edge from-layer="350" from-port="0" to-layer="353" to-port="0" /> + <edge from-layer="351" from-port="0" to-layer="352" to-port="1" /> + <edge from-layer="352" from-port="2" to-layer="353" to-port="1" /> + <edge from-layer="353" from-port="2" to-layer="355" to-port="0" /> + <edge from-layer="354" from-port="0" to-layer="355" to-port="1" /> + <edge from-layer="355" from-port="2" to-layer="357" to-port="0" /> + <edge from-layer="356" from-port="0" to-layer="357" to-port="1" /> + <edge from-layer="357" from-port="2" to-layer="358" to-port="1" /> + <edge from-layer="358" from-port="2" to-layer="360" to-port="0" /> + <edge from-layer="359" from-port="0" to-layer="360" to-port="1" /> + <edge from-layer="360" from-port="2" to-layer="371" to-port="0" /> + <edge from-layer="360" from-port="2" to-layer="361" to-port="0" /> + <edge from-layer="361" from-port="1" to-layer="368" to-port="0" /> + <edge from-layer="362" from-port="0" to-layer="365" to-port="0" /> + <edge from-layer="362" from-port="0" to-layer="368" to-port="1" /> + <edge from-layer="363" from-port="0" to-layer="368" to-port="2" /> + <edge from-layer="364" from-port="0" to-layer="366" to-port="0" /> + <edge from-layer="365" from-port="1" to-layer="366" to-port="1" /> + <edge from-layer="366" from-port="2" to-layer="368" to-port="3" /> + <edge from-layer="367" from-port="0" to-layer="368" to-port="4" /> + <edge from-layer="368" from-port="5" to-layer="370" to-port="0" /> + <edge from-layer="369" from-port="0" to-layer="370" to-port="1" /> + <edge from-layer="370" from-port="2" to-layer="371" to-port="1" /> + <edge from-layer="371" from-port="2" to-layer="373" to-port="0" /> + <edge from-layer="372" from-port="0" to-layer="373" to-port="1" /> + <edge from-layer="373" from-port="2" to-layer="374" to-port="1" /> + <edge from-layer="374" from-port="2" to-layer="375" to-port="1" /> + <edge from-layer="375" from-port="2" to-layer="376" to-port="0" /> + <edge from-layer="376" from-port="1" to-layer="383" to-port="0" /> + <edge from-layer="376" from-port="1" to-layer="403" to-port="0" /> + <edge from-layer="377" from-port="0" to-layer="402" to-port="0" /> + <edge from-layer="378" from-port="0" to-layer="391" to-port="0" /> + <edge from-layer="379" from-port="0" to-layer="382" to-port="0" /> + <edge from-layer="380" from-port="0" to-layer="382" to-port="1" /> + <edge from-layer="381" from-port="0" to-layer="382" to-port="2" /> + <edge from-layer="382" from-port="3" to-layer="383" to-port="1" /> + <edge from-layer="383" from-port="2" to-layer="385" to-port="0" /> + <edge from-layer="384" from-port="0" to-layer="385" to-port="1" /> + <edge from-layer="385" from-port="2" to-layer="387" to-port="0" /> + <edge from-layer="386" from-port="0" to-layer="387" to-port="1" /> + <edge from-layer="387" from-port="2" to-layer="388" to-port="0" /> + <edge from-layer="388" from-port="1" to-layer="390" to-port="0" /> + <edge from-layer="389" from-port="0" to-layer="390" to-port="1" /> + <edge from-layer="390" from-port="2" to-layer="391" to-port="1" /> + <edge from-layer="391" from-port="2" to-layer="393" to-port="0" /> + <edge from-layer="391" from-port="2" to-layer="397" to-port="0" /> + <edge from-layer="392" from-port="0" to-layer="393" to-port="1" /> + <edge from-layer="393" from-port="2" to-layer="394" to-port="0" /> + <edge from-layer="394" from-port="1" to-layer="396" to-port="0" /> + <edge from-layer="395" from-port="0" to-layer="396" to-port="1" /> + <edge from-layer="396" from-port="2" to-layer="397" to-port="1" /> + <edge from-layer="397" from-port="2" to-layer="399" to-port="0" /> + <edge from-layer="398" from-port="0" to-layer="399" to-port="1" /> + <edge from-layer="399" from-port="2" to-layer="401" to-port="0" /> + <edge from-layer="400" from-port="0" to-layer="401" to-port="1" /> + <edge from-layer="401" from-port="2" to-layer="402" to-port="1" /> + <edge from-layer="402" from-port="2" to-layer="403" to-port="1" /> + <edge from-layer="403" from-port="2" to-layer="404" to-port="0" /> + <edge from-layer="404" from-port="1" to-layer="464" to-port="0" /> + <edge from-layer="404" from-port="1" to-layer="411" to-port="0" /> + <edge from-layer="405" from-port="0" to-layer="463" to-port="0" /> + <edge from-layer="406" from-port="0" to-layer="419" to-port="0" /> + <edge from-layer="407" from-port="0" to-layer="410" to-port="0" /> + <edge from-layer="408" from-port="0" to-layer="410" to-port="1" /> + <edge from-layer="409" from-port="0" to-layer="410" to-port="2" /> + <edge from-layer="410" from-port="3" to-layer="411" to-port="1" /> + <edge from-layer="411" from-port="2" to-layer="413" to-port="0" /> + <edge from-layer="412" from-port="0" to-layer="413" to-port="1" /> + <edge from-layer="413" from-port="2" to-layer="415" to-port="0" /> + <edge from-layer="414" from-port="0" to-layer="415" to-port="1" /> + <edge from-layer="415" from-port="2" to-layer="416" to-port="0" /> + <edge from-layer="416" from-port="1" to-layer="418" to-port="0" /> + <edge from-layer="416" from-port="1" to-layer="441" to-port="0" /> + <edge from-layer="416" from-port="1" to-layer="429" to-port="0" /> + <edge from-layer="417" from-port="0" to-layer="418" to-port="1" /> + <edge from-layer="418" from-port="2" to-layer="419" to-port="1" /> + <edge from-layer="419" from-port="2" to-layer="421" to-port="0" /> + <edge from-layer="420" from-port="0" to-layer="421" to-port="1" /> + <edge from-layer="421" from-port="2" to-layer="423" to-port="0" /> + <edge from-layer="422" from-port="0" to-layer="423" to-port="1" /> + <edge from-layer="423" from-port="2" to-layer="427" to-port="0" /> + <edge from-layer="424" from-port="0" to-layer="426" to-port="0" /> + <edge from-layer="425" from-port="0" to-layer="426" to-port="1" /> + <edge from-layer="426" from-port="2" to-layer="427" to-port="1" /> + <edge from-layer="426" from-port="2" to-layer="434" to-port="1" /> + <edge from-layer="427" from-port="2" to-layer="435" to-port="0" /> + <edge from-layer="428" from-port="0" to-layer="429" to-port="1" /> + <edge from-layer="429" from-port="2" to-layer="431" to-port="0" /> + <edge from-layer="430" from-port="0" to-layer="431" to-port="1" /> + <edge from-layer="431" from-port="2" to-layer="433" to-port="0" /> + <edge from-layer="432" from-port="0" to-layer="433" to-port="1" /> + <edge from-layer="433" from-port="2" to-layer="434" to-port="0" /> + <edge from-layer="434" from-port="2" to-layer="435" to-port="1" /> + <edge from-layer="435" from-port="2" to-layer="436" to-port="0" /> + <edge from-layer="436" from-port="1" to-layer="437" to-port="0" /> + <edge from-layer="437" from-port="1" to-layer="438" to-port="0" /> + <edge from-layer="438" from-port="1" to-layer="447" to-port="0" /> + <edge from-layer="439" from-port="0" to-layer="442" to-port="0" /> + <edge from-layer="440" from-port="0" to-layer="441" to-port="1" /> + <edge from-layer="441" from-port="2" to-layer="442" to-port="1" /> + <edge from-layer="442" from-port="2" to-layer="444" to-port="0" /> + <edge from-layer="443" from-port="0" to-layer="444" to-port="1" /> + <edge from-layer="444" from-port="2" to-layer="446" to-port="0" /> + <edge from-layer="445" from-port="0" to-layer="446" to-port="1" /> + <edge from-layer="446" from-port="2" to-layer="447" to-port="1" /> + <edge from-layer="447" from-port="2" to-layer="449" to-port="0" /> + <edge from-layer="448" from-port="0" to-layer="449" to-port="1" /> + <edge from-layer="449" from-port="2" to-layer="450" to-port="0" /> + <edge from-layer="449" from-port="2" to-layer="460" to-port="0" /> + <edge from-layer="450" from-port="1" to-layer="457" to-port="0" /> + <edge from-layer="451" from-port="0" to-layer="454" to-port="0" /> + <edge from-layer="451" from-port="0" to-layer="457" to-port="1" /> + <edge from-layer="452" from-port="0" to-layer="457" to-port="2" /> + <edge from-layer="453" from-port="0" to-layer="455" to-port="0" /> + <edge from-layer="454" from-port="1" to-layer="455" to-port="1" /> + <edge from-layer="455" from-port="2" to-layer="457" to-port="3" /> + <edge from-layer="456" from-port="0" to-layer="457" to-port="4" /> + <edge from-layer="457" from-port="5" to-layer="459" to-port="0" /> + <edge from-layer="458" from-port="0" to-layer="459" to-port="1" /> + <edge from-layer="459" from-port="2" to-layer="460" to-port="1" /> + <edge from-layer="460" from-port="2" to-layer="462" to-port="0" /> + <edge from-layer="461" from-port="0" to-layer="462" to-port="1" /> + <edge from-layer="462" from-port="2" to-layer="463" to-port="1" /> + <edge from-layer="463" from-port="2" to-layer="464" to-port="1" /> + <edge from-layer="464" from-port="2" to-layer="465" to-port="0" /> + <edge from-layer="465" from-port="1" to-layer="492" to-port="0" /> + <edge from-layer="465" from-port="1" to-layer="472" to-port="0" /> + <edge from-layer="466" from-port="0" to-layer="491" to-port="0" /> + <edge from-layer="467" from-port="0" to-layer="480" to-port="0" /> + <edge from-layer="468" from-port="0" to-layer="471" to-port="0" /> + <edge from-layer="469" from-port="0" to-layer="471" to-port="1" /> + <edge from-layer="470" from-port="0" to-layer="471" to-port="2" /> + <edge from-layer="471" from-port="3" to-layer="472" to-port="1" /> + <edge from-layer="472" from-port="2" to-layer="474" to-port="0" /> + <edge from-layer="473" from-port="0" to-layer="474" to-port="1" /> + <edge from-layer="474" from-port="2" to-layer="476" to-port="0" /> + <edge from-layer="475" from-port="0" to-layer="476" to-port="1" /> + <edge from-layer="476" from-port="2" to-layer="477" to-port="0" /> + <edge from-layer="477" from-port="1" to-layer="479" to-port="0" /> + <edge from-layer="478" from-port="0" to-layer="479" to-port="1" /> + <edge from-layer="479" from-port="2" to-layer="480" to-port="1" /> + <edge from-layer="480" from-port="2" to-layer="486" to-port="0" /> + <edge from-layer="480" from-port="2" to-layer="482" to-port="0" /> + <edge from-layer="481" from-port="0" to-layer="482" to-port="1" /> + <edge from-layer="482" from-port="2" to-layer="483" to-port="0" /> + <edge from-layer="483" from-port="1" to-layer="485" to-port="0" /> + <edge from-layer="484" from-port="0" to-layer="485" to-port="1" /> + <edge from-layer="485" from-port="2" to-layer="486" to-port="1" /> + <edge from-layer="486" from-port="2" to-layer="488" to-port="0" /> + <edge from-layer="487" from-port="0" to-layer="488" to-port="1" /> + <edge from-layer="488" from-port="2" to-layer="490" to-port="0" /> + <edge from-layer="489" from-port="0" to-layer="490" to-port="1" /> + <edge from-layer="490" from-port="2" to-layer="491" to-port="1" /> + <edge from-layer="491" from-port="2" to-layer="492" to-port="1" /> + <edge from-layer="492" from-port="2" to-layer="493" to-port="0" /> + <edge from-layer="493" from-port="1" to-layer="553" to-port="0" /> + <edge from-layer="493" from-port="1" to-layer="500" to-port="0" /> + <edge from-layer="494" from-port="0" to-layer="552" to-port="0" /> + <edge from-layer="495" from-port="0" to-layer="508" to-port="0" /> + <edge from-layer="496" from-port="0" to-layer="499" to-port="0" /> + <edge from-layer="497" from-port="0" to-layer="499" to-port="1" /> + <edge from-layer="498" from-port="0" to-layer="499" to-port="2" /> + <edge from-layer="499" from-port="3" to-layer="500" to-port="1" /> + <edge from-layer="500" from-port="2" to-layer="502" to-port="0" /> + <edge from-layer="501" from-port="0" to-layer="502" to-port="1" /> + <edge from-layer="502" from-port="2" to-layer="504" to-port="0" /> + <edge from-layer="503" from-port="0" to-layer="504" to-port="1" /> + <edge from-layer="504" from-port="2" to-layer="505" to-port="0" /> + <edge from-layer="505" from-port="1" to-layer="530" to-port="0" /> + <edge from-layer="505" from-port="1" to-layer="518" to-port="0" /> + <edge from-layer="505" from-port="1" to-layer="507" to-port="0" /> + <edge from-layer="506" from-port="0" to-layer="507" to-port="1" /> + <edge from-layer="507" from-port="2" to-layer="508" to-port="1" /> + <edge from-layer="508" from-port="2" to-layer="510" to-port="0" /> + <edge from-layer="509" from-port="0" to-layer="510" to-port="1" /> + <edge from-layer="510" from-port="2" to-layer="512" to-port="0" /> + <edge from-layer="511" from-port="0" to-layer="512" to-port="1" /> + <edge from-layer="512" from-port="2" to-layer="516" to-port="0" /> + <edge from-layer="513" from-port="0" to-layer="515" to-port="0" /> + <edge from-layer="514" from-port="0" to-layer="515" to-port="1" /> + <edge from-layer="515" from-port="2" to-layer="523" to-port="1" /> + <edge from-layer="515" from-port="2" to-layer="516" to-port="1" /> + <edge from-layer="516" from-port="2" to-layer="524" to-port="0" /> + <edge from-layer="517" from-port="0" to-layer="518" to-port="1" /> + <edge from-layer="518" from-port="2" to-layer="520" to-port="0" /> + <edge from-layer="519" from-port="0" to-layer="520" to-port="1" /> + <edge from-layer="520" from-port="2" to-layer="522" to-port="0" /> + <edge from-layer="521" from-port="0" to-layer="522" to-port="1" /> + <edge from-layer="522" from-port="2" to-layer="523" to-port="0" /> + <edge from-layer="523" from-port="2" to-layer="524" to-port="1" /> + <edge from-layer="524" from-port="2" to-layer="525" to-port="0" /> + <edge from-layer="525" from-port="1" to-layer="526" to-port="0" /> + <edge from-layer="526" from-port="1" to-layer="527" to-port="0" /> + <edge from-layer="527" from-port="1" to-layer="536" to-port="0" /> + <edge from-layer="528" from-port="0" to-layer="531" to-port="0" /> + <edge from-layer="529" from-port="0" to-layer="530" to-port="1" /> + <edge from-layer="530" from-port="2" to-layer="531" to-port="1" /> + <edge from-layer="531" from-port="2" to-layer="533" to-port="0" /> + <edge from-layer="532" from-port="0" to-layer="533" to-port="1" /> + <edge from-layer="533" from-port="2" to-layer="535" to-port="0" /> + <edge from-layer="534" from-port="0" to-layer="535" to-port="1" /> + <edge from-layer="535" from-port="2" to-layer="536" to-port="1" /> + <edge from-layer="536" from-port="2" to-layer="538" to-port="0" /> + <edge from-layer="537" from-port="0" to-layer="538" to-port="1" /> + <edge from-layer="538" from-port="2" to-layer="539" to-port="0" /> + <edge from-layer="538" from-port="2" to-layer="549" to-port="0" /> + <edge from-layer="539" from-port="1" to-layer="546" to-port="0" /> + <edge from-layer="540" from-port="0" to-layer="543" to-port="0" /> + <edge from-layer="540" from-port="0" to-layer="546" to-port="1" /> + <edge from-layer="541" from-port="0" to-layer="546" to-port="2" /> + <edge from-layer="542" from-port="0" to-layer="544" to-port="0" /> + <edge from-layer="543" from-port="1" to-layer="544" to-port="1" /> + <edge from-layer="544" from-port="2" to-layer="546" to-port="3" /> + <edge from-layer="545" from-port="0" to-layer="546" to-port="4" /> + <edge from-layer="546" from-port="5" to-layer="548" to-port="0" /> + <edge from-layer="547" from-port="0" to-layer="548" to-port="1" /> + <edge from-layer="548" from-port="2" to-layer="549" to-port="1" /> + <edge from-layer="549" from-port="2" to-layer="551" to-port="0" /> + <edge from-layer="550" from-port="0" to-layer="551" to-port="1" /> + <edge from-layer="551" from-port="2" to-layer="552" to-port="1" /> + <edge from-layer="552" from-port="2" to-layer="553" to-port="1" /> + <edge from-layer="553" from-port="2" to-layer="554" to-port="0" /> + <edge from-layer="554" from-port="1" to-layer="581" to-port="0" /> + <edge from-layer="554" from-port="1" to-layer="561" to-port="0" /> + <edge from-layer="555" from-port="0" to-layer="580" to-port="0" /> + <edge from-layer="556" from-port="0" to-layer="569" to-port="0" /> + <edge from-layer="557" from-port="0" to-layer="560" to-port="0" /> + <edge from-layer="558" from-port="0" to-layer="560" to-port="1" /> + <edge from-layer="559" from-port="0" to-layer="560" to-port="2" /> + <edge from-layer="560" from-port="3" to-layer="561" to-port="1" /> + <edge from-layer="561" from-port="2" to-layer="563" to-port="0" /> + <edge from-layer="562" from-port="0" to-layer="563" to-port="1" /> + <edge from-layer="563" from-port="2" to-layer="565" to-port="0" /> + <edge from-layer="564" from-port="0" to-layer="565" to-port="1" /> + <edge from-layer="565" from-port="2" to-layer="566" to-port="0" /> + <edge from-layer="566" from-port="1" to-layer="568" to-port="0" /> + <edge from-layer="567" from-port="0" to-layer="568" to-port="1" /> + <edge from-layer="568" from-port="2" to-layer="569" to-port="1" /> + <edge from-layer="569" from-port="2" to-layer="571" to-port="0" /> + <edge from-layer="569" from-port="2" to-layer="575" to-port="0" /> + <edge from-layer="570" from-port="0" to-layer="571" to-port="1" /> + <edge from-layer="571" from-port="2" to-layer="572" to-port="0" /> + <edge from-layer="572" from-port="1" to-layer="574" to-port="0" /> + <edge from-layer="573" from-port="0" to-layer="574" to-port="1" /> + <edge from-layer="574" from-port="2" to-layer="575" to-port="1" /> + <edge from-layer="575" from-port="2" to-layer="577" to-port="0" /> + <edge from-layer="576" from-port="0" to-layer="577" to-port="1" /> + <edge from-layer="577" from-port="2" to-layer="579" to-port="0" /> + <edge from-layer="578" from-port="0" to-layer="579" to-port="1" /> + <edge from-layer="579" from-port="2" to-layer="580" to-port="1" /> + <edge from-layer="580" from-port="2" to-layer="581" to-port="1" /> + <edge from-layer="581" from-port="2" to-layer="582" to-port="0" /> + <edge from-layer="582" from-port="1" to-layer="587" to-port="0" /> + <edge from-layer="583" from-port="0" to-layer="586" to-port="0" /> + <edge from-layer="584" from-port="0" to-layer="586" to-port="1" /> + <edge from-layer="585" from-port="0" to-layer="586" to-port="2" /> + <edge from-layer="586" from-port="3" to-layer="587" to-port="1" /> + <edge from-layer="587" from-port="2" to-layer="589" to-port="0" /> + <edge from-layer="588" from-port="0" to-layer="589" to-port="1" /> + <edge from-layer="589" from-port="2" to-layer="591" to-port="0" /> + <edge from-layer="590" from-port="0" to-layer="591" to-port="1" /> + <edge from-layer="591" from-port="2" to-layer="592" to-port="0" /> + <edge from-layer="592" from-port="1" to-layer="593" to-port="0" /> + </edges> + <rt_info /> +</net>