twadada commited on
Commit
30b4123
·
verified ·
1 Parent(s): fc51eec

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +2599 -0
README.md ADDED
@@ -0,0 +1,2599 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - mteb
4
+ model-index:
5
+ - name: gte-base-en-v1.5_embs_nofiltering_sortlenTrue_phrase2sent_512_15epoch__adam0.001_accum1_best_epoch_2611200_bs128_result
6
+ results:
7
+ - task:
8
+ type: Classification
9
+ dataset:
10
+ type: None
11
+ name: MTEB AmazonCounterfactualClassification (en)
12
+ config: en
13
+ split: test
14
+ revision: e8379541af4e31359cca9fbcf4b00f2671dba205
15
+ metrics:
16
+ - type: accuracy
17
+ value: 75.02985074626866
18
+ - type: ap
19
+ value: 38.2391132433526
20
+ - type: f1
21
+ value: 69.06974168824816
22
+ - task:
23
+ type: Classification
24
+ dataset:
25
+ type: None
26
+ name: MTEB AmazonPolarityClassification
27
+ config: default
28
+ split: test
29
+ revision: e2d317d38cd51312af73b3d32a06d1a08b442046
30
+ metrics:
31
+ - type: accuracy
32
+ value: 74.00564999999999
33
+ - type: ap
34
+ value: 68.12255640587608
35
+ - type: f1
36
+ value: 73.88644324572483
37
+ - task:
38
+ type: Classification
39
+ dataset:
40
+ type: None
41
+ name: MTEB AmazonReviewsClassification (en)
42
+ config: en
43
+ split: test
44
+ revision: 1399c76144fd37290681b995c656ef9b2e06e26d
45
+ metrics:
46
+ - type: accuracy
47
+ value: 39.46000000000001
48
+ - type: f1
49
+ value: 38.77579430134605
50
+ - task:
51
+ type: Retrieval
52
+ dataset:
53
+ type: None
54
+ name: MTEB ArguAna
55
+ config: default
56
+ split: test
57
+ revision: c22ab2a51041ffd869aaddef7af8d8215647e41a
58
+ metrics:
59
+ - type: map_at_1
60
+ value: 21.337
61
+ - type: map_at_10
62
+ value: 36.104
63
+ - type: map_at_100
64
+ value: 37.363
65
+ - type: map_at_1000
66
+ value: 37.38
67
+ - type: map_at_3
68
+ value: 31.46
69
+ - type: map_at_5
70
+ value: 33.861000000000004
71
+ - type: mrr_at_1
72
+ value: 22.119
73
+ - type: mrr_at_10
74
+ value: 36.379
75
+ - type: mrr_at_100
76
+ value: 37.644
77
+ - type: mrr_at_1000
78
+ value: 37.662
79
+ - type: mrr_at_3
80
+ value: 31.745
81
+ - type: mrr_at_5
82
+ value: 34.12
83
+ - type: ndcg_at_1
84
+ value: 21.337
85
+ - type: ndcg_at_10
86
+ value: 44.557
87
+ - type: ndcg_at_100
88
+ value: 50.072
89
+ - type: ndcg_at_1000
90
+ value: 50.499
91
+ - type: ndcg_at_3
92
+ value: 34.794000000000004
93
+ - type: ndcg_at_5
94
+ value: 39.125
95
+ - type: precision_at_1
96
+ value: 21.337
97
+ - type: precision_at_10
98
+ value: 7.176
99
+ - type: precision_at_100
100
+ value: 0.962
101
+ - type: precision_at_1000
102
+ value: 0.1
103
+ - type: precision_at_3
104
+ value: 14.817
105
+ - type: precision_at_5
106
+ value: 10.996
107
+ - type: recall_at_1
108
+ value: 21.337
109
+ - type: recall_at_10
110
+ value: 71.764
111
+ - type: recall_at_100
112
+ value: 96.23
113
+ - type: recall_at_1000
114
+ value: 99.502
115
+ - type: recall_at_3
116
+ value: 44.452000000000005
117
+ - type: recall_at_5
118
+ value: 54.979
119
+ - task:
120
+ type: Clustering
121
+ dataset:
122
+ type: None
123
+ name: MTEB ArxivClusteringP2P
124
+ config: default
125
+ split: test
126
+ revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
127
+ metrics:
128
+ - type: v_measure
129
+ value: 38.36878876355172
130
+ - task:
131
+ type: Clustering
132
+ dataset:
133
+ type: None
134
+ name: MTEB ArxivClusteringS2S
135
+ config: default
136
+ split: test
137
+ revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
138
+ metrics:
139
+ - type: v_measure
140
+ value: 28.19433994044647
141
+ - task:
142
+ type: Reranking
143
+ dataset:
144
+ type: None
145
+ name: MTEB AskUbuntuDupQuestions
146
+ config: default
147
+ split: test
148
+ revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
149
+ metrics:
150
+ - type: map
151
+ value: 54.16001797554904
152
+ - type: mrr
153
+ value: 67.81130457723256
154
+ - task:
155
+ type: STS
156
+ dataset:
157
+ type: None
158
+ name: MTEB BIOSSES
159
+ config: default
160
+ split: test
161
+ revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
162
+ metrics:
163
+ - type: cos_sim_pearson
164
+ value: 82.1086837226076
165
+ - type: cos_sim_spearman
166
+ value: 80.60966807127197
167
+ - type: euclidean_pearson
168
+ value: 80.73535719827952
169
+ - type: euclidean_spearman
170
+ value: 80.60966807127197
171
+ - type: manhattan_pearson
172
+ value: 79.10544477221981
173
+ - type: manhattan_spearman
174
+ value: 79.59759681777079
175
+ - task:
176
+ type: Classification
177
+ dataset:
178
+ type: None
179
+ name: MTEB Banking77Classification
180
+ config: default
181
+ split: test
182
+ revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
183
+ metrics:
184
+ - type: accuracy
185
+ value: 75.1525974025974
186
+ - type: f1
187
+ value: 74.45181803662257
188
+ - task:
189
+ type: Clustering
190
+ dataset:
191
+ type: None
192
+ name: MTEB BiorxivClusteringP2P
193
+ config: default
194
+ split: test
195
+ revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
196
+ metrics:
197
+ - type: v_measure
198
+ value: 34.568758810321945
199
+ - task:
200
+ type: Clustering
201
+ dataset:
202
+ type: None
203
+ name: MTEB BiorxivClusteringS2S
204
+ config: default
205
+ split: test
206
+ revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
207
+ metrics:
208
+ - type: v_measure
209
+ value: 25.645931603960374
210
+ - task:
211
+ type: Retrieval
212
+ dataset:
213
+ type: None
214
+ name: MTEB CQADupstackAndroidRetrieval
215
+ config: default
216
+ split: test
217
+ revision: f46a197baaae43b4f621051089b82a364682dfeb
218
+ metrics:
219
+ - type: map_at_1
220
+ value: 21.36
221
+ - type: map_at_10
222
+ value: 29.034
223
+ - type: map_at_100
224
+ value: 30.197000000000003
225
+ - type: map_at_1000
226
+ value: 30.36
227
+ - type: map_at_3
228
+ value: 26.334999999999997
229
+ - type: map_at_5
230
+ value: 27.894999999999996
231
+ - type: mrr_at_1
232
+ value: 27.325
233
+ - type: mrr_at_10
234
+ value: 34.975
235
+ - type: mrr_at_100
236
+ value: 35.787
237
+ - type: mrr_at_1000
238
+ value: 35.864000000000004
239
+ - type: mrr_at_3
240
+ value: 32.761
241
+ - type: mrr_at_5
242
+ value: 34.083999999999996
243
+ - type: ndcg_at_1
244
+ value: 27.325
245
+ - type: ndcg_at_10
246
+ value: 34.302
247
+ - type: ndcg_at_100
248
+ value: 39.35
249
+ - type: ndcg_at_1000
250
+ value: 42.516999999999996
251
+ - type: ndcg_at_3
252
+ value: 30.336000000000002
253
+ - type: ndcg_at_5
254
+ value: 32.234
255
+ - type: precision_at_1
256
+ value: 27.325
257
+ - type: precision_at_10
258
+ value: 6.694999999999999
259
+ - type: precision_at_100
260
+ value: 1.157
261
+ - type: precision_at_1000
262
+ value: 0.17500000000000002
263
+ - type: precision_at_3
264
+ value: 14.926
265
+ - type: precision_at_5
266
+ value: 11.044
267
+ - type: recall_at_1
268
+ value: 21.36
269
+ - type: recall_at_10
270
+ value: 43.64
271
+ - type: recall_at_100
272
+ value: 66.219
273
+ - type: recall_at_1000
274
+ value: 87.675
275
+ - type: recall_at_3
276
+ value: 31.34
277
+ - type: recall_at_5
278
+ value: 36.896
279
+ - task:
280
+ type: Retrieval
281
+ dataset:
282
+ type: None
283
+ name: MTEB CQADupstackEnglishRetrieval
284
+ config: default
285
+ split: test
286
+ revision: ad9991cb51e31e31e430383c75ffb2885547b5f0
287
+ metrics:
288
+ - type: map_at_1
289
+ value: 19.008
290
+ - type: map_at_10
291
+ value: 25.762
292
+ - type: map_at_100
293
+ value: 26.819
294
+ - type: map_at_1000
295
+ value: 26.944000000000003
296
+ - type: map_at_3
297
+ value: 23.688000000000002
298
+ - type: map_at_5
299
+ value: 24.844
300
+ - type: mrr_at_1
301
+ value: 24.204
302
+ - type: mrr_at_10
303
+ value: 30.325999999999997
304
+ - type: mrr_at_100
305
+ value: 31.151
306
+ - type: mrr_at_1000
307
+ value: 31.22
308
+ - type: mrr_at_3
309
+ value: 28.311999999999998
310
+ - type: mrr_at_5
311
+ value: 29.424
312
+ - type: ndcg_at_1
313
+ value: 24.204
314
+ - type: ndcg_at_10
315
+ value: 30.020999999999997
316
+ - type: ndcg_at_100
317
+ value: 34.632000000000005
318
+ - type: ndcg_at_1000
319
+ value: 37.462
320
+ - type: ndcg_at_3
321
+ value: 26.607999999999997
322
+ - type: ndcg_at_5
323
+ value: 28.105999999999998
324
+ - type: precision_at_1
325
+ value: 24.204
326
+ - type: precision_at_10
327
+ value: 5.624
328
+ - type: precision_at_100
329
+ value: 1.012
330
+ - type: precision_at_1000
331
+ value: 0.151
332
+ - type: precision_at_3
333
+ value: 12.887
334
+ - type: precision_at_5
335
+ value: 9.159
336
+ - type: recall_at_1
337
+ value: 19.008
338
+ - type: recall_at_10
339
+ value: 38.156
340
+ - type: recall_at_100
341
+ value: 58.158
342
+ - type: recall_at_1000
343
+ value: 77.471
344
+ - type: recall_at_3
345
+ value: 27.964
346
+ - type: recall_at_5
347
+ value: 32.221
348
+ - task:
349
+ type: Retrieval
350
+ dataset:
351
+ type: None
352
+ name: MTEB CQADupstackGamingRetrieval
353
+ config: default
354
+ split: test
355
+ revision: 4885aa143210c98657558c04aaf3dc47cfb54340
356
+ metrics:
357
+ - type: map_at_1
358
+ value: 27.833999999999996
359
+ - type: map_at_10
360
+ value: 36.896
361
+ - type: map_at_100
362
+ value: 38.002
363
+ - type: map_at_1000
364
+ value: 38.088
365
+ - type: map_at_3
366
+ value: 34.283
367
+ - type: map_at_5
368
+ value: 35.754999999999995
369
+ - type: mrr_at_1
370
+ value: 32.351
371
+ - type: mrr_at_10
372
+ value: 40.275
373
+ - type: mrr_at_100
374
+ value: 41.152
375
+ - type: mrr_at_1000
376
+ value: 41.204
377
+ - type: mrr_at_3
378
+ value: 37.973
379
+ - type: mrr_at_5
380
+ value: 39.242
381
+ - type: ndcg_at_1
382
+ value: 32.351
383
+ - type: ndcg_at_10
384
+ value: 41.867
385
+ - type: ndcg_at_100
386
+ value: 47.073
387
+ - type: ndcg_at_1000
388
+ value: 49.125
389
+ - type: ndcg_at_3
390
+ value: 37.129
391
+ - type: ndcg_at_5
392
+ value: 39.361000000000004
393
+ - type: precision_at_1
394
+ value: 32.351
395
+ - type: precision_at_10
396
+ value: 6.765000000000001
397
+ - type: precision_at_100
398
+ value: 1.0330000000000001
399
+ - type: precision_at_1000
400
+ value: 0.129
401
+ - type: precision_at_3
402
+ value: 16.489
403
+ - type: precision_at_5
404
+ value: 11.398
405
+ - type: recall_at_1
406
+ value: 27.833999999999996
407
+ - type: recall_at_10
408
+ value: 53.668000000000006
409
+ - type: recall_at_100
410
+ value: 77.114
411
+ - type: recall_at_1000
412
+ value: 92.131
413
+ - type: recall_at_3
414
+ value: 40.745
415
+ - type: recall_at_5
416
+ value: 46.375
417
+ - task:
418
+ type: Retrieval
419
+ dataset:
420
+ type: None
421
+ name: MTEB CQADupstackGisRetrieval
422
+ config: default
423
+ split: test
424
+ revision: 5003b3064772da1887988e05400cf3806fe491f2
425
+ metrics:
426
+ - type: map_at_1
427
+ value: 12.863
428
+ - type: map_at_10
429
+ value: 17.881
430
+ - type: map_at_100
431
+ value: 18.742
432
+ - type: map_at_1000
433
+ value: 18.86
434
+ - type: map_at_3
435
+ value: 16.485
436
+ - type: map_at_5
437
+ value: 17.262
438
+ - type: mrr_at_1
439
+ value: 13.898
440
+ - type: mrr_at_10
441
+ value: 19.152
442
+ - type: mrr_at_100
443
+ value: 20.007
444
+ - type: mrr_at_1000
445
+ value: 20.116
446
+ - type: mrr_at_3
447
+ value: 17.759
448
+ - type: mrr_at_5
449
+ value: 18.544
450
+ - type: ndcg_at_1
451
+ value: 13.898
452
+ - type: ndcg_at_10
453
+ value: 20.818
454
+ - type: ndcg_at_100
455
+ value: 25.342
456
+ - type: ndcg_at_1000
457
+ value: 28.895
458
+ - type: ndcg_at_3
459
+ value: 18.034
460
+ - type: ndcg_at_5
461
+ value: 19.367
462
+ - type: precision_at_1
463
+ value: 13.898
464
+ - type: precision_at_10
465
+ value: 3.254
466
+ - type: precision_at_100
467
+ value: 0.582
468
+ - type: precision_at_1000
469
+ value: 0.094
470
+ - type: precision_at_3
471
+ value: 7.8340000000000005
472
+ - type: precision_at_5
473
+ value: 5.446
474
+ - type: recall_at_1
475
+ value: 12.863
476
+ - type: recall_at_10
477
+ value: 28.636
478
+ - type: recall_at_100
479
+ value: 50.112
480
+ - type: recall_at_1000
481
+ value: 77.828
482
+ - type: recall_at_3
483
+ value: 21.087
484
+ - type: recall_at_5
485
+ value: 24.307000000000002
486
+ - task:
487
+ type: Retrieval
488
+ dataset:
489
+ type: None
490
+ name: MTEB CQADupstackMathematicaRetrieval
491
+ config: default
492
+ split: test
493
+ revision: 90fceea13679c63fe563ded68f3b6f06e50061de
494
+ metrics:
495
+ - type: map_at_1
496
+ value: 7.8020000000000005
497
+ - type: map_at_10
498
+ value: 11.673
499
+ - type: map_at_100
500
+ value: 12.462
501
+ - type: map_at_1000
502
+ value: 12.589
503
+ - type: map_at_3
504
+ value: 10.035
505
+ - type: map_at_5
506
+ value: 10.699
507
+ - type: mrr_at_1
508
+ value: 9.826
509
+ - type: mrr_at_10
510
+ value: 14.248
511
+ - type: mrr_at_100
512
+ value: 15.057
513
+ - type: mrr_at_1000
514
+ value: 15.156
515
+ - type: mrr_at_3
516
+ value: 12.5
517
+ - type: mrr_at_5
518
+ value: 13.221
519
+ - type: ndcg_at_1
520
+ value: 9.826
521
+ - type: ndcg_at_10
522
+ value: 14.818999999999999
523
+ - type: ndcg_at_100
524
+ value: 19.309
525
+ - type: ndcg_at_1000
526
+ value: 22.954
527
+ - type: ndcg_at_3
528
+ value: 11.535
529
+ - type: ndcg_at_5
530
+ value: 12.577
531
+ - type: precision_at_1
532
+ value: 9.826
533
+ - type: precision_at_10
534
+ value: 2.923
535
+ - type: precision_at_100
536
+ value: 0.618
537
+ - type: precision_at_1000
538
+ value: 0.105
539
+ - type: precision_at_3
540
+ value: 5.5969999999999995
541
+ - type: precision_at_5
542
+ value: 4.08
543
+ - type: recall_at_1
544
+ value: 7.8020000000000005
545
+ - type: recall_at_10
546
+ value: 22.141
547
+ - type: recall_at_100
548
+ value: 42.653999999999996
549
+ - type: recall_at_1000
550
+ value: 70.02199999999999
551
+ - type: recall_at_3
552
+ value: 13.020000000000001
553
+ - type: recall_at_5
554
+ value: 15.645999999999999
555
+ - task:
556
+ type: Retrieval
557
+ dataset:
558
+ type: None
559
+ name: MTEB CQADupstackPhysicsRetrieval
560
+ config: default
561
+ split: test
562
+ revision: 79531abbd1fb92d06c6d6315a0cbbbf5bb247ea4
563
+ metrics:
564
+ - type: map_at_1
565
+ value: 18.532
566
+ - type: map_at_10
567
+ value: 24.692
568
+ - type: map_at_100
569
+ value: 26.023000000000003
570
+ - type: map_at_1000
571
+ value: 26.165
572
+ - type: map_at_3
573
+ value: 22.522000000000002
574
+ - type: map_at_5
575
+ value: 23.694000000000003
576
+ - type: mrr_at_1
577
+ value: 22.618
578
+ - type: mrr_at_10
579
+ value: 29.334
580
+ - type: mrr_at_100
581
+ value: 30.348999999999997
582
+ - type: mrr_at_1000
583
+ value: 30.435000000000002
584
+ - type: mrr_at_3
585
+ value: 26.997
586
+ - type: mrr_at_5
587
+ value: 28.282
588
+ - type: ndcg_at_1
589
+ value: 22.618
590
+ - type: ndcg_at_10
591
+ value: 29.188
592
+ - type: ndcg_at_100
593
+ value: 35.213
594
+ - type: ndcg_at_1000
595
+ value: 38.471
596
+ - type: ndcg_at_3
597
+ value: 25.313999999999997
598
+ - type: ndcg_at_5
599
+ value: 27.057
600
+ - type: precision_at_1
601
+ value: 22.618
602
+ - type: precision_at_10
603
+ value: 5.38
604
+ - type: precision_at_100
605
+ value: 1.0
606
+ - type: precision_at_1000
607
+ value: 0.149
608
+ - type: precision_at_3
609
+ value: 11.741999999999999
610
+ - type: precision_at_5
611
+ value: 8.662
612
+ - type: recall_at_1
613
+ value: 18.532
614
+ - type: recall_at_10
615
+ value: 38.164
616
+ - type: recall_at_100
617
+ value: 64.197
618
+ - type: recall_at_1000
619
+ value: 86.75399999999999
620
+ - type: recall_at_3
621
+ value: 27.262999999999998
622
+ - type: recall_at_5
623
+ value: 31.651
624
+ - task:
625
+ type: Retrieval
626
+ dataset:
627
+ type: None
628
+ name: MTEB CQADupstackProgrammersRetrieval
629
+ config: default
630
+ split: test
631
+ revision: 6184bc1440d2dbc7612be22b50686b8826d22b32
632
+ metrics:
633
+ - type: map_at_1
634
+ value: 15.257000000000001
635
+ - type: map_at_10
636
+ value: 20.762
637
+ - type: map_at_100
638
+ value: 21.956999999999997
639
+ - type: map_at_1000
640
+ value: 22.102
641
+ - type: map_at_3
642
+ value: 18.826999999999998
643
+ - type: map_at_5
644
+ value: 19.911
645
+ - type: mrr_at_1
646
+ value: 18.836
647
+ - type: mrr_at_10
648
+ value: 24.484
649
+ - type: mrr_at_100
650
+ value: 25.561
651
+ - type: mrr_at_1000
652
+ value: 25.651000000000003
653
+ - type: mrr_at_3
654
+ value: 22.546
655
+ - type: mrr_at_5
656
+ value: 23.613
657
+ - type: ndcg_at_1
658
+ value: 18.836
659
+ - type: ndcg_at_10
660
+ value: 24.465999999999998
661
+ - type: ndcg_at_100
662
+ value: 30.337999999999997
663
+ - type: ndcg_at_1000
664
+ value: 33.775
665
+ - type: ndcg_at_3
666
+ value: 21.029
667
+ - type: ndcg_at_5
668
+ value: 22.576
669
+ - type: precision_at_1
670
+ value: 18.836
671
+ - type: precision_at_10
672
+ value: 4.5089999999999995
673
+ - type: precision_at_100
674
+ value: 0.895
675
+ - type: precision_at_1000
676
+ value: 0.13799999999999998
677
+ - type: precision_at_3
678
+ value: 9.893
679
+ - type: precision_at_5
680
+ value: 7.146
681
+ - type: recall_at_1
682
+ value: 15.257000000000001
683
+ - type: recall_at_10
684
+ value: 32.062000000000005
685
+ - type: recall_at_100
686
+ value: 57.577
687
+ - type: recall_at_1000
688
+ value: 81.75
689
+ - type: recall_at_3
690
+ value: 22.579
691
+ - type: recall_at_5
692
+ value: 26.613999999999997
693
+ - task:
694
+ type: Retrieval
695
+ dataset:
696
+ type: mteb/cqadupstack
697
+ name: MTEB CQADupstackRetrieval
698
+ config: default
699
+ split: test
700
+ revision: 4885aa143210c98657558c04aaf3dc47cfb54340
701
+ metrics:
702
+ - type: map_at_1
703
+ value: 15.333916666666667
704
+ - type: map_at_10
705
+ value: 20.908583333333333
706
+ - type: map_at_100
707
+ value: 21.891333333333332
708
+ - type: map_at_1000
709
+ value: 22.02225
710
+ - type: map_at_3
711
+ value: 19.053833333333333
712
+ - type: map_at_5
713
+ value: 20.053916666666666
714
+ - type: mrr_at_1
715
+ value: 18.5485
716
+ - type: mrr_at_10
717
+ value: 24.15733333333333
718
+ - type: mrr_at_100
719
+ value: 25.01325
720
+ - type: mrr_at_1000
721
+ value: 25.101000000000003
722
+ - type: mrr_at_3
723
+ value: 22.34708333333333
724
+ - type: mrr_at_5
725
+ value: 23.317833333333336
726
+ - type: ndcg_at_1
727
+ value: 18.5485
728
+ - type: ndcg_at_10
729
+ value: 24.614
730
+ - type: ndcg_at_100
731
+ value: 29.431166666666662
732
+ - type: ndcg_at_1000
733
+ value: 32.6675
734
+ - type: ndcg_at_3
735
+ value: 21.285083333333336
736
+ - type: ndcg_at_5
737
+ value: 22.751416666666664
738
+ - type: precision_at_1
739
+ value: 18.5485
740
+ - type: precision_at_10
741
+ value: 4.4013333333333335
742
+ - type: precision_at_100
743
+ value: 0.8160000000000001
744
+ - type: precision_at_1000
745
+ value: 0.12825
746
+ - type: precision_at_3
747
+ value: 9.847916666666666
748
+ - type: precision_at_5
749
+ value: 7.069166666666668
750
+ - type: recall_at_1
751
+ value: 15.333916666666667
752
+ - type: recall_at_10
753
+ value: 32.5695
754
+ - type: recall_at_100
755
+ value: 54.50375
756
+ - type: recall_at_1000
757
+ value: 78.02300000000001
758
+ - type: recall_at_3
759
+ value: 23.115000000000002
760
+ - type: recall_at_5
761
+ value: 26.968416666666666
762
+ - task:
763
+ type: Retrieval
764
+ dataset:
765
+ type: None
766
+ name: MTEB CQADupstackStatsRetrieval
767
+ config: default
768
+ split: test
769
+ revision: 65ac3a16b8e91f9cee4c9828cc7c335575432a2a
770
+ metrics:
771
+ - type: map_at_1
772
+ value: 11.745
773
+ - type: map_at_10
774
+ value: 16.406000000000002
775
+ - type: map_at_100
776
+ value: 17.157
777
+ - type: map_at_1000
778
+ value: 17.249
779
+ - type: map_at_3
780
+ value: 14.835999999999999
781
+ - type: map_at_5
782
+ value: 15.803
783
+ - type: mrr_at_1
784
+ value: 13.804
785
+ - type: mrr_at_10
786
+ value: 18.55
787
+ - type: mrr_at_100
788
+ value: 19.306
789
+ - type: mrr_at_1000
790
+ value: 19.38
791
+ - type: mrr_at_3
792
+ value: 17.05
793
+ - type: mrr_at_5
794
+ value: 17.947
795
+ - type: ndcg_at_1
796
+ value: 13.804
797
+ - type: ndcg_at_10
798
+ value: 19.339000000000002
799
+ - type: ndcg_at_100
800
+ value: 23.624000000000002
801
+ - type: ndcg_at_1000
802
+ value: 26.301999999999996
803
+ - type: ndcg_at_3
804
+ value: 16.454
805
+ - type: ndcg_at_5
806
+ value: 17.999000000000002
807
+ - type: precision_at_1
808
+ value: 13.804
809
+ - type: precision_at_10
810
+ value: 3.282
811
+ - type: precision_at_100
812
+ value: 0.598
813
+ - type: precision_at_1000
814
+ value: 0.091
815
+ - type: precision_at_3
816
+ value: 7.413
817
+ - type: precision_at_5
818
+ value: 5.428999999999999
819
+ - type: recall_at_1
820
+ value: 11.745
821
+ - type: recall_at_10
822
+ value: 26.255
823
+ - type: recall_at_100
824
+ value: 46.888000000000005
825
+ - type: recall_at_1000
826
+ value: 67.131
827
+ - type: recall_at_3
828
+ value: 18.434
829
+ - type: recall_at_5
830
+ value: 22.328
831
+ - task:
832
+ type: Retrieval
833
+ dataset:
834
+ type: None
835
+ name: MTEB CQADupstackTexRetrieval
836
+ config: default
837
+ split: test
838
+ revision: 46989137a86843e03a6195de44b09deda022eec7
839
+ metrics:
840
+ - type: map_at_1
841
+ value: 8.119
842
+ - type: map_at_10
843
+ value: 11.944
844
+ - type: map_at_100
845
+ value: 12.647
846
+ - type: map_at_1000
847
+ value: 12.770000000000001
848
+ - type: map_at_3
849
+ value: 10.612
850
+ - type: map_at_5
851
+ value: 11.292
852
+ - type: mrr_at_1
853
+ value: 10.22
854
+ - type: mrr_at_10
855
+ value: 14.496
856
+ - type: mrr_at_100
857
+ value: 15.18
858
+ - type: mrr_at_1000
859
+ value: 15.279000000000002
860
+ - type: mrr_at_3
861
+ value: 12.979
862
+ - type: mrr_at_5
863
+ value: 13.755
864
+ - type: ndcg_at_1
865
+ value: 10.22
866
+ - type: ndcg_at_10
867
+ value: 14.687
868
+ - type: ndcg_at_100
869
+ value: 18.543000000000003
870
+ - type: ndcg_at_1000
871
+ value: 22.099
872
+ - type: ndcg_at_3
873
+ value: 12.076
874
+ - type: ndcg_at_5
875
+ value: 13.161999999999999
876
+ - type: precision_at_1
877
+ value: 10.22
878
+ - type: precision_at_10
879
+ value: 2.822
880
+ - type: precision_at_100
881
+ value: 0.565
882
+ - type: precision_at_1000
883
+ value: 0.104
884
+ - type: precision_at_3
885
+ value: 5.781
886
+ - type: precision_at_5
887
+ value: 4.301
888
+ - type: recall_at_1
889
+ value: 8.119
890
+ - type: recall_at_10
891
+ value: 20.527
892
+ - type: recall_at_100
893
+ value: 38.719
894
+ - type: recall_at_1000
895
+ value: 65.16300000000001
896
+ - type: recall_at_3
897
+ value: 13.275
898
+ - type: recall_at_5
899
+ value: 15.998999999999999
900
+ - task:
901
+ type: Retrieval
902
+ dataset:
903
+ type: None
904
+ name: MTEB CQADupstackUnixRetrieval
905
+ config: default
906
+ split: test
907
+ revision: 6c6430d3a6d36f8d2a829195bc5dc94d7e063e53
908
+ metrics:
909
+ - type: map_at_1
910
+ value: 13.334999999999999
911
+ - type: map_at_10
912
+ value: 18.194
913
+ - type: map_at_100
914
+ value: 19.049
915
+ - type: map_at_1000
916
+ value: 19.17
917
+ - type: map_at_3
918
+ value: 16.625
919
+ - type: map_at_5
920
+ value: 17.509
921
+ - type: mrr_at_1
922
+ value: 16.231
923
+ - type: mrr_at_10
924
+ value: 21.308
925
+ - type: mrr_at_100
926
+ value: 22.154
927
+ - type: mrr_at_1000
928
+ value: 22.25
929
+ - type: mrr_at_3
930
+ value: 19.761
931
+ - type: mrr_at_5
932
+ value: 20.567
933
+ - type: ndcg_at_1
934
+ value: 16.231
935
+ - type: ndcg_at_10
936
+ value: 21.525
937
+ - type: ndcg_at_100
938
+ value: 26.008
939
+ - type: ndcg_at_1000
940
+ value: 29.351
941
+ - type: ndcg_at_3
942
+ value: 18.54
943
+ - type: ndcg_at_5
944
+ value: 19.916
945
+ - type: precision_at_1
946
+ value: 16.231
947
+ - type: precision_at_10
948
+ value: 3.6470000000000002
949
+ - type: precision_at_100
950
+ value: 0.655
951
+ - type: precision_at_1000
952
+ value: 0.106
953
+ - type: precision_at_3
954
+ value: 8.488999999999999
955
+ - type: precision_at_5
956
+ value: 6.007
957
+ - type: recall_at_1
958
+ value: 13.334999999999999
959
+ - type: recall_at_10
960
+ value: 28.804999999999996
961
+ - type: recall_at_100
962
+ value: 49.303000000000004
963
+ - type: recall_at_1000
964
+ value: 73.95
965
+ - type: recall_at_3
966
+ value: 20.531
967
+ - type: recall_at_5
968
+ value: 24.067
969
+ - task:
970
+ type: Retrieval
971
+ dataset:
972
+ type: None
973
+ name: MTEB CQADupstackWebmastersRetrieval
974
+ config: default
975
+ split: test
976
+ revision: 160c094312a0e1facb97e55eeddb698c0abe3571
977
+ metrics:
978
+ - type: map_at_1
979
+ value: 16.002
980
+ - type: map_at_10
981
+ value: 21.282
982
+ - type: map_at_100
983
+ value: 22.518
984
+ - type: map_at_1000
985
+ value: 22.728
986
+ - type: map_at_3
987
+ value: 19.463
988
+ - type: map_at_5
989
+ value: 20.314
990
+ - type: mrr_at_1
991
+ value: 19.96
992
+ - type: mrr_at_10
993
+ value: 25.084
994
+ - type: mrr_at_100
995
+ value: 26.028000000000002
996
+ - type: mrr_at_1000
997
+ value: 26.119999999999997
998
+ - type: mrr_at_3
999
+ value: 23.352999999999998
1000
+ - type: mrr_at_5
1001
+ value: 24.203
1002
+ - type: ndcg_at_1
1003
+ value: 19.96
1004
+ - type: ndcg_at_10
1005
+ value: 25.275
1006
+ - type: ndcg_at_100
1007
+ value: 30.574
1008
+ - type: ndcg_at_1000
1009
+ value: 34.359
1010
+ - type: ndcg_at_3
1011
+ value: 22.281000000000002
1012
+ - type: ndcg_at_5
1013
+ value: 23.32
1014
+ - type: precision_at_1
1015
+ value: 19.96
1016
+ - type: precision_at_10
1017
+ value: 4.920999999999999
1018
+ - type: precision_at_100
1019
+ value: 1.1320000000000001
1020
+ - type: precision_at_1000
1021
+ value: 0.20400000000000001
1022
+ - type: precision_at_3
1023
+ value: 10.408000000000001
1024
+ - type: precision_at_5
1025
+ value: 7.352
1026
+ - type: recall_at_1
1027
+ value: 16.002
1028
+ - type: recall_at_10
1029
+ value: 32.452
1030
+ - type: recall_at_100
1031
+ value: 57.297
1032
+ - type: recall_at_1000
1033
+ value: 83.332
1034
+ - type: recall_at_3
1035
+ value: 23.101
1036
+ - type: recall_at_5
1037
+ value: 26.395999999999997
1038
+ - task:
1039
+ type: Retrieval
1040
+ dataset:
1041
+ type: None
1042
+ name: MTEB CQADupstackWordpressRetrieval
1043
+ config: default
1044
+ split: test
1045
+ revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4
1046
+ metrics:
1047
+ - type: map_at_1
1048
+ value: 12.15
1049
+ - type: map_at_10
1050
+ value: 16.377
1051
+ - type: map_at_100
1052
+ value: 17.122999999999998
1053
+ - type: map_at_1000
1054
+ value: 17.241999999999997
1055
+ - type: map_at_3
1056
+ value: 14.935
1057
+ - type: map_at_5
1058
+ value: 15.669
1059
+ - type: mrr_at_1
1060
+ value: 13.309000000000001
1061
+ - type: mrr_at_10
1062
+ value: 17.656
1063
+ - type: mrr_at_100
1064
+ value: 18.427
1065
+ - type: mrr_at_1000
1066
+ value: 18.537
1067
+ - type: mrr_at_3
1068
+ value: 16.174
1069
+ - type: mrr_at_5
1070
+ value: 16.932
1071
+ - type: ndcg_at_1
1072
+ value: 13.309000000000001
1073
+ - type: ndcg_at_10
1074
+ value: 19.061
1075
+ - type: ndcg_at_100
1076
+ value: 23.168
1077
+ - type: ndcg_at_1000
1078
+ value: 26.700000000000003
1079
+ - type: ndcg_at_3
1080
+ value: 16.085
1081
+ - type: ndcg_at_5
1082
+ value: 17.342
1083
+ - type: precision_at_1
1084
+ value: 13.309000000000001
1085
+ - type: precision_at_10
1086
+ value: 2.994
1087
+ - type: precision_at_100
1088
+ value: 0.545
1089
+ - type: precision_at_1000
1090
+ value: 0.093
1091
+ - type: precision_at_3
1092
+ value: 6.715999999999999
1093
+ - type: precision_at_5
1094
+ value: 4.806
1095
+ - type: recall_at_1
1096
+ value: 12.15
1097
+ - type: recall_at_10
1098
+ value: 26.328000000000003
1099
+ - type: recall_at_100
1100
+ value: 45.806999999999995
1101
+ - type: recall_at_1000
1102
+ value: 73.06899999999999
1103
+ - type: recall_at_3
1104
+ value: 18.041
1105
+ - type: recall_at_5
1106
+ value: 21.121000000000002
1107
+ - task:
1108
+ type: Retrieval
1109
+ dataset:
1110
+ type: None
1111
+ name: MTEB ClimateFEVER
1112
+ config: default
1113
+ split: test
1114
+ revision: 47f2ac6acb640fc46020b02a5b59fdda04d39380
1115
+ metrics:
1116
+ - type: map_at_1
1117
+ value: 7.675999999999999
1118
+ - type: map_at_10
1119
+ value: 13.600000000000001
1120
+ - type: map_at_100
1121
+ value: 15.287999999999998
1122
+ - type: map_at_1000
1123
+ value: 15.508
1124
+ - type: map_at_3
1125
+ value: 11.256
1126
+ - type: map_at_5
1127
+ value: 12.312
1128
+ - type: mrr_at_1
1129
+ value: 17.459
1130
+ - type: mrr_at_10
1131
+ value: 27.166
1132
+ - type: mrr_at_100
1133
+ value: 28.406
1134
+ - type: mrr_at_1000
1135
+ value: 28.464
1136
+ - type: mrr_at_3
1137
+ value: 23.931
1138
+ - type: mrr_at_5
1139
+ value: 25.66
1140
+ - type: ndcg_at_1
1141
+ value: 17.459
1142
+ - type: ndcg_at_10
1143
+ value: 20.146
1144
+ - type: ndcg_at_100
1145
+ value: 27.625
1146
+ - type: ndcg_at_1000
1147
+ value: 31.819999999999997
1148
+ - type: ndcg_at_3
1149
+ value: 15.870999999999999
1150
+ - type: ndcg_at_5
1151
+ value: 17.158
1152
+ - type: precision_at_1
1153
+ value: 17.459
1154
+ - type: precision_at_10
1155
+ value: 6.638
1156
+ - type: precision_at_100
1157
+ value: 1.4569999999999999
1158
+ - type: precision_at_1000
1159
+ value: 0.22300000000000003
1160
+ - type: precision_at_3
1161
+ value: 12.074
1162
+ - type: precision_at_5
1163
+ value: 9.407
1164
+ - type: recall_at_1
1165
+ value: 7.675999999999999
1166
+ - type: recall_at_10
1167
+ value: 25.267
1168
+ - type: recall_at_100
1169
+ value: 51.69200000000001
1170
+ - type: recall_at_1000
1171
+ value: 75.58
1172
+ - type: recall_at_3
1173
+ value: 14.901
1174
+ - type: recall_at_5
1175
+ value: 18.543000000000003
1176
+ - task:
1177
+ type: Retrieval
1178
+ dataset:
1179
+ type: None
1180
+ name: MTEB DBPedia
1181
+ config: default
1182
+ split: test
1183
+ revision: c0f706b76e590d620bd6618b3ca8efdd34e2d659
1184
+ metrics:
1185
+ - type: map_at_1
1186
+ value: 4.424
1187
+ - type: map_at_10
1188
+ value: 10.278
1189
+ - type: map_at_100
1190
+ value: 14.516000000000002
1191
+ - type: map_at_1000
1192
+ value: 15.584999999999999
1193
+ - type: map_at_3
1194
+ value: 7.179
1195
+ - type: map_at_5
1196
+ value: 8.556
1197
+ - type: mrr_at_1
1198
+ value: 42.0
1199
+ - type: mrr_at_10
1200
+ value: 52.653000000000006
1201
+ - type: mrr_at_100
1202
+ value: 53.33599999999999
1203
+ - type: mrr_at_1000
1204
+ value: 53.364999999999995
1205
+ - type: mrr_at_3
1206
+ value: 50.542
1207
+ - type: mrr_at_5
1208
+ value: 51.803999999999995
1209
+ - type: ndcg_at_1
1210
+ value: 31.624999999999996
1211
+ - type: ndcg_at_10
1212
+ value: 25.167
1213
+ - type: ndcg_at_100
1214
+ value: 28.766000000000002
1215
+ - type: ndcg_at_1000
1216
+ value: 35.959
1217
+ - type: ndcg_at_3
1218
+ value: 27.807
1219
+ - type: ndcg_at_5
1220
+ value: 26.569
1221
+ - type: precision_at_1
1222
+ value: 42.0
1223
+ - type: precision_at_10
1224
+ value: 22.5
1225
+ - type: precision_at_100
1226
+ value: 7.295
1227
+ - type: precision_at_1000
1228
+ value: 1.543
1229
+ - type: precision_at_3
1230
+ value: 33.5
1231
+ - type: precision_at_5
1232
+ value: 29.099999999999998
1233
+ - type: recall_at_1
1234
+ value: 4.424
1235
+ - type: recall_at_10
1236
+ value: 15.359
1237
+ - type: recall_at_100
1238
+ value: 35.99
1239
+ - type: recall_at_1000
1240
+ value: 60.707
1241
+ - type: recall_at_3
1242
+ value: 8.803999999999998
1243
+ - type: recall_at_5
1244
+ value: 11.349
1245
+ - task:
1246
+ type: Classification
1247
+ dataset:
1248
+ type: None
1249
+ name: MTEB EmotionClassification
1250
+ config: default
1251
+ split: test
1252
+ revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
1253
+ metrics:
1254
+ - type: accuracy
1255
+ value: 48.99
1256
+ - type: f1
1257
+ value: 44.72383731785718
1258
+ - task:
1259
+ type: Retrieval
1260
+ dataset:
1261
+ type: None
1262
+ name: MTEB FEVER
1263
+ config: default
1264
+ split: test
1265
+ revision: bea83ef9e8fb933d90a2f1d5515737465d613e12
1266
+ metrics:
1267
+ - type: map_at_1
1268
+ value: 17.753
1269
+ - type: map_at_10
1270
+ value: 26.762999999999998
1271
+ - type: map_at_100
1272
+ value: 27.773999999999997
1273
+ - type: map_at_1000
1274
+ value: 27.845
1275
+ - type: map_at_3
1276
+ value: 24.096
1277
+ - type: map_at_5
1278
+ value: 25.6
1279
+ - type: mrr_at_1
1280
+ value: 19.022
1281
+ - type: mrr_at_10
1282
+ value: 28.46
1283
+ - type: mrr_at_100
1284
+ value: 29.462
1285
+ - type: mrr_at_1000
1286
+ value: 29.520999999999997
1287
+ - type: mrr_at_3
1288
+ value: 25.679999999999996
1289
+ - type: mrr_at_5
1290
+ value: 27.272999999999996
1291
+ - type: ndcg_at_1
1292
+ value: 19.022
1293
+ - type: ndcg_at_10
1294
+ value: 32.063
1295
+ - type: ndcg_at_100
1296
+ value: 37.169999999999995
1297
+ - type: ndcg_at_1000
1298
+ value: 39.048
1299
+ - type: ndcg_at_3
1300
+ value: 26.558999999999997
1301
+ - type: ndcg_at_5
1302
+ value: 29.266
1303
+ - type: precision_at_1
1304
+ value: 19.022
1305
+ - type: precision_at_10
1306
+ value: 5.119
1307
+ - type: precision_at_100
1308
+ value: 0.786
1309
+ - type: precision_at_1000
1310
+ value: 0.097
1311
+ - type: precision_at_3
1312
+ value: 11.571
1313
+ - type: precision_at_5
1314
+ value: 8.368
1315
+ - type: recall_at_1
1316
+ value: 17.753
1317
+ - type: recall_at_10
1318
+ value: 47.061
1319
+ - type: recall_at_100
1320
+ value: 70.75200000000001
1321
+ - type: recall_at_1000
1322
+ value: 85.134
1323
+ - type: recall_at_3
1324
+ value: 32.049
1325
+ - type: recall_at_5
1326
+ value: 38.556000000000004
1327
+ - task:
1328
+ type: Retrieval
1329
+ dataset:
1330
+ type: None
1331
+ name: MTEB FiQA2018
1332
+ config: default
1333
+ split: test
1334
+ revision: 27a168819829fe9bcd655c2df245fb19452e8e06
1335
+ metrics:
1336
+ - type: map_at_1
1337
+ value: 6.845
1338
+ - type: map_at_10
1339
+ value: 11.806999999999999
1340
+ - type: map_at_100
1341
+ value: 13.104
1342
+ - type: map_at_1000
1343
+ value: 13.317
1344
+ - type: map_at_3
1345
+ value: 9.746
1346
+ - type: map_at_5
1347
+ value: 10.806000000000001
1348
+ - type: mrr_at_1
1349
+ value: 13.889000000000001
1350
+ - type: mrr_at_10
1351
+ value: 20.456
1352
+ - type: mrr_at_100
1353
+ value: 21.572
1354
+ - type: mrr_at_1000
1355
+ value: 21.666
1356
+ - type: mrr_at_3
1357
+ value: 18.184
1358
+ - type: mrr_at_5
1359
+ value: 19.387999999999998
1360
+ - type: ndcg_at_1
1361
+ value: 13.889000000000001
1362
+ - type: ndcg_at_10
1363
+ value: 16.552
1364
+ - type: ndcg_at_100
1365
+ value: 22.817999999999998
1366
+ - type: ndcg_at_1000
1367
+ value: 27.401999999999997
1368
+ - type: ndcg_at_3
1369
+ value: 13.527000000000001
1370
+ - type: ndcg_at_5
1371
+ value: 14.6
1372
+ - type: precision_at_1
1373
+ value: 13.889000000000001
1374
+ - type: precision_at_10
1375
+ value: 4.984999999999999
1376
+ - type: precision_at_100
1377
+ value: 1.097
1378
+ - type: precision_at_1000
1379
+ value: 0.191
1380
+ - type: precision_at_3
1381
+ value: 9.208
1382
+ - type: precision_at_5
1383
+ value: 7.13
1384
+ - type: recall_at_1
1385
+ value: 6.845
1386
+ - type: recall_at_10
1387
+ value: 22.012999999999998
1388
+ - type: recall_at_100
1389
+ value: 46.75
1390
+ - type: recall_at_1000
1391
+ value: 74.945
1392
+ - type: recall_at_3
1393
+ value: 12.352
1394
+ - type: recall_at_5
1395
+ value: 16.217000000000002
1396
+ - task:
1397
+ type: Retrieval
1398
+ dataset:
1399
+ type: None
1400
+ name: MTEB HotpotQA
1401
+ config: default
1402
+ split: test
1403
+ revision: ab518f4d6fcca38d87c25209f94beba119d02014
1404
+ metrics:
1405
+ - type: map_at_1
1406
+ value: 18.886
1407
+ - type: map_at_10
1408
+ value: 26.729999999999997
1409
+ - type: map_at_100
1410
+ value: 27.732
1411
+ - type: map_at_1000
1412
+ value: 27.85
1413
+ - type: map_at_3
1414
+ value: 24.57
1415
+ - type: map_at_5
1416
+ value: 25.774
1417
+ - type: mrr_at_1
1418
+ value: 37.772
1419
+ - type: mrr_at_10
1420
+ value: 45.239000000000004
1421
+ - type: mrr_at_100
1422
+ value: 45.972
1423
+ - type: mrr_at_1000
1424
+ value: 46.027
1425
+ - type: mrr_at_3
1426
+ value: 43.279
1427
+ - type: mrr_at_5
1428
+ value: 44.397
1429
+ - type: ndcg_at_1
1430
+ value: 37.772
1431
+ - type: ndcg_at_10
1432
+ value: 33.973
1433
+ - type: ndcg_at_100
1434
+ value: 38.456
1435
+ - type: ndcg_at_1000
1436
+ value: 41.178
1437
+ - type: ndcg_at_3
1438
+ value: 29.988999999999997
1439
+ - type: ndcg_at_5
1440
+ value: 31.935999999999996
1441
+ - type: precision_at_1
1442
+ value: 37.772
1443
+ - type: precision_at_10
1444
+ value: 7.465
1445
+ - type: precision_at_100
1446
+ value: 1.1039999999999999
1447
+ - type: precision_at_1000
1448
+ value: 0.147
1449
+ - type: precision_at_3
1450
+ value: 18.902
1451
+ - type: precision_at_5
1452
+ value: 12.883
1453
+ - type: recall_at_1
1454
+ value: 18.886
1455
+ - type: recall_at_10
1456
+ value: 37.326
1457
+ - type: recall_at_100
1458
+ value: 55.186
1459
+ - type: recall_at_1000
1460
+ value: 73.309
1461
+ - type: recall_at_3
1462
+ value: 28.352
1463
+ - type: recall_at_5
1464
+ value: 32.208
1465
+ - task:
1466
+ type: Classification
1467
+ dataset:
1468
+ type: None
1469
+ name: MTEB ImdbClassification
1470
+ config: default
1471
+ split: test
1472
+ revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
1473
+ metrics:
1474
+ - type: accuracy
1475
+ value: 70.6808
1476
+ - type: ap
1477
+ value: 64.78268083902698
1478
+ - type: f1
1479
+ value: 70.48410216634053
1480
+ - task:
1481
+ type: Retrieval
1482
+ dataset:
1483
+ type: None
1484
+ name: MTEB MSMARCO
1485
+ config: default
1486
+ split: dev
1487
+ revision: c5a29a104738b98a9e76336939199e264163d4a0
1488
+ metrics:
1489
+ - type: map_at_1
1490
+ value: 6.300999999999999
1491
+ - type: map_at_10
1492
+ value: 11.068999999999999
1493
+ - type: map_at_100
1494
+ value: 12.0
1495
+ - type: map_at_1000
1496
+ value: 12.113999999999999
1497
+ - type: map_at_3
1498
+ value: 9.381
1499
+ - type: map_at_5
1500
+ value: 10.265
1501
+ - type: mrr_at_1
1502
+ value: 6.476
1503
+ - type: mrr_at_10
1504
+ value: 11.357000000000001
1505
+ - type: mrr_at_100
1506
+ value: 12.293
1507
+ - type: mrr_at_1000
1508
+ value: 12.403
1509
+ - type: mrr_at_3
1510
+ value: 9.62
1511
+ - type: mrr_at_5
1512
+ value: 10.544
1513
+ - type: ndcg_at_1
1514
+ value: 6.461
1515
+ - type: ndcg_at_10
1516
+ value: 14.058000000000002
1517
+ - type: ndcg_at_100
1518
+ value: 19.156000000000002
1519
+ - type: ndcg_at_1000
1520
+ value: 22.570999999999998
1521
+ - type: ndcg_at_3
1522
+ value: 10.475
1523
+ - type: ndcg_at_5
1524
+ value: 12.092
1525
+ - type: precision_at_1
1526
+ value: 6.461
1527
+ - type: precision_at_10
1528
+ value: 2.431
1529
+ - type: precision_at_100
1530
+ value: 0.508
1531
+ - type: precision_at_1000
1532
+ value: 0.08
1533
+ - type: precision_at_3
1534
+ value: 4.6080000000000005
1535
+ - type: precision_at_5
1536
+ value: 3.5900000000000003
1537
+ - type: recall_at_1
1538
+ value: 6.300999999999999
1539
+ - type: recall_at_10
1540
+ value: 23.378
1541
+ - type: recall_at_100
1542
+ value: 48.258
1543
+ - type: recall_at_1000
1544
+ value: 75.652
1545
+ - type: recall_at_3
1546
+ value: 13.422
1547
+ - type: recall_at_5
1548
+ value: 17.316000000000003
1549
+ - task:
1550
+ type: Classification
1551
+ dataset:
1552
+ type: None
1553
+ name: MTEB MTOPDomainClassification (en)
1554
+ config: en
1555
+ split: test
1556
+ revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
1557
+ metrics:
1558
+ - type: accuracy
1559
+ value: 91.34290925672595
1560
+ - type: f1
1561
+ value: 90.45651851550997
1562
+ - task:
1563
+ type: Classification
1564
+ dataset:
1565
+ type: None
1566
+ name: MTEB MTOPIntentClassification (en)
1567
+ config: en
1568
+ split: test
1569
+ revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
1570
+ metrics:
1571
+ - type: accuracy
1572
+ value: 63.57045143638851
1573
+ - type: f1
1574
+ value: 44.02606500037181
1575
+ - task:
1576
+ type: Classification
1577
+ dataset:
1578
+ type: None
1579
+ name: MTEB MassiveIntentClassification (en)
1580
+ config: en
1581
+ split: test
1582
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
1583
+ metrics:
1584
+ - type: accuracy
1585
+ value: 65.63214525891057
1586
+ - type: f1
1587
+ value: 63.33629303043603
1588
+ - task:
1589
+ type: Classification
1590
+ dataset:
1591
+ type: None
1592
+ name: MTEB MassiveScenarioClassification (en)
1593
+ config: en
1594
+ split: test
1595
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1596
+ metrics:
1597
+ - type: accuracy
1598
+ value: 72.65635507733691
1599
+ - type: f1
1600
+ value: 71.52506282204605
1601
+ - task:
1602
+ type: Clustering
1603
+ dataset:
1604
+ type: None
1605
+ name: MTEB MedrxivClusteringP2P
1606
+ config: default
1607
+ split: test
1608
+ revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
1609
+ metrics:
1610
+ - type: v_measure
1611
+ value: 30.593804768886113
1612
+ - task:
1613
+ type: Clustering
1614
+ dataset:
1615
+ type: None
1616
+ name: MTEB MedrxivClusteringS2S
1617
+ config: default
1618
+ split: test
1619
+ revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
1620
+ metrics:
1621
+ - type: v_measure
1622
+ value: 27.41249151566158
1623
+ - task:
1624
+ type: Reranking
1625
+ dataset:
1626
+ type: None
1627
+ name: MTEB MindSmallReranking
1628
+ config: default
1629
+ split: test
1630
+ revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
1631
+ metrics:
1632
+ - type: map
1633
+ value: 31.0983658178549
1634
+ - type: mrr
1635
+ value: 32.18857446274346
1636
+ - task:
1637
+ type: Retrieval
1638
+ dataset:
1639
+ type: None
1640
+ name: MTEB NFCorpus
1641
+ config: default
1642
+ split: test
1643
+ revision: ec0fa4fe99da2ff19ca1214b7966684033a58814
1644
+ metrics:
1645
+ - type: map_at_1
1646
+ value: 4.79
1647
+ - type: map_at_10
1648
+ value: 9.095
1649
+ - type: map_at_100
1650
+ value: 11.738999999999999
1651
+ - type: map_at_1000
1652
+ value: 13.203000000000001
1653
+ - type: map_at_3
1654
+ value: 6.68
1655
+ - type: map_at_5
1656
+ value: 7.924
1657
+ - type: mrr_at_1
1658
+ value: 37.461
1659
+ - type: mrr_at_10
1660
+ value: 46.283
1661
+ - type: mrr_at_100
1662
+ value: 46.983999999999995
1663
+ - type: mrr_at_1000
1664
+ value: 47.046
1665
+ - type: mrr_at_3
1666
+ value: 43.55
1667
+ - type: mrr_at_5
1668
+ value: 45.268
1669
+ - type: ndcg_at_1
1670
+ value: 35.604
1671
+ - type: ndcg_at_10
1672
+ value: 27.249000000000002
1673
+ - type: ndcg_at_100
1674
+ value: 26.215
1675
+ - type: ndcg_at_1000
1676
+ value: 35.867
1677
+ - type: ndcg_at_3
1678
+ value: 30.330000000000002
1679
+ - type: ndcg_at_5
1680
+ value: 29.574
1681
+ - type: precision_at_1
1682
+ value: 37.152
1683
+ - type: precision_at_10
1684
+ value: 20.031
1685
+ - type: precision_at_100
1686
+ value: 7.217
1687
+ - type: precision_at_1000
1688
+ value: 2.072
1689
+ - type: precision_at_3
1690
+ value: 27.761000000000003
1691
+ - type: precision_at_5
1692
+ value: 25.448999999999998
1693
+ - type: recall_at_1
1694
+ value: 4.79
1695
+ - type: recall_at_10
1696
+ value: 13.197000000000001
1697
+ - type: recall_at_100
1698
+ value: 28.816999999999997
1699
+ - type: recall_at_1000
1700
+ value: 63.010999999999996
1701
+ - type: recall_at_3
1702
+ value: 7.53
1703
+ - type: recall_at_5
1704
+ value: 10.234
1705
+ - task:
1706
+ type: Retrieval
1707
+ dataset:
1708
+ type: None
1709
+ name: MTEB NQ
1710
+ config: default
1711
+ split: test
1712
+ revision: b774495ed302d8c44a3a7ea25c90dbce03968f31
1713
+ metrics:
1714
+ - type: map_at_1
1715
+ value: 9.345
1716
+ - type: map_at_10
1717
+ value: 16.655
1718
+ - type: map_at_100
1719
+ value: 17.991
1720
+ - type: map_at_1000
1721
+ value: 18.093999999999998
1722
+ - type: map_at_3
1723
+ value: 13.825000000000001
1724
+ - type: map_at_5
1725
+ value: 15.445
1726
+ - type: mrr_at_1
1727
+ value: 10.834000000000001
1728
+ - type: mrr_at_10
1729
+ value: 18.533
1730
+ - type: mrr_at_100
1731
+ value: 19.750999999999998
1732
+ - type: mrr_at_1000
1733
+ value: 19.837
1734
+ - type: mrr_at_3
1735
+ value: 15.623999999999999
1736
+ - type: mrr_at_5
1737
+ value: 17.307
1738
+ - type: ndcg_at_1
1739
+ value: 10.834000000000001
1740
+ - type: ndcg_at_10
1741
+ value: 21.503
1742
+ - type: ndcg_at_100
1743
+ value: 28.141
1744
+ - type: ndcg_at_1000
1745
+ value: 30.951
1746
+ - type: ndcg_at_3
1747
+ value: 15.7
1748
+ - type: ndcg_at_5
1749
+ value: 18.608
1750
+ - type: precision_at_1
1751
+ value: 10.834000000000001
1752
+ - type: precision_at_10
1753
+ value: 4.09
1754
+ - type: precision_at_100
1755
+ value: 0.782
1756
+ - type: precision_at_1000
1757
+ value: 0.105
1758
+ - type: precision_at_3
1759
+ value: 7.474
1760
+ - type: precision_at_5
1761
+ value: 6.089
1762
+ - type: recall_at_1
1763
+ value: 9.345
1764
+ - type: recall_at_10
1765
+ value: 34.760000000000005
1766
+ - type: recall_at_100
1767
+ value: 65.455
1768
+ - type: recall_at_1000
1769
+ value: 87.008
1770
+ - type: recall_at_3
1771
+ value: 19.397000000000002
1772
+ - type: recall_at_5
1773
+ value: 26.205000000000002
1774
+ - task:
1775
+ type: Retrieval
1776
+ dataset:
1777
+ type: None
1778
+ name: MTEB QuoraRetrieval
1779
+ config: default
1780
+ split: test
1781
+ revision: None
1782
+ metrics:
1783
+ - type: map_at_1
1784
+ value: 63.864
1785
+ - type: map_at_10
1786
+ value: 76.823
1787
+ - type: map_at_100
1788
+ value: 77.58699999999999
1789
+ - type: map_at_1000
1790
+ value: 77.619
1791
+ - type: map_at_3
1792
+ value: 73.834
1793
+ - type: map_at_5
1794
+ value: 75.703
1795
+ - type: mrr_at_1
1796
+ value: 73.55000000000001
1797
+ - type: mrr_at_10
1798
+ value: 81.077
1799
+ - type: mrr_at_100
1800
+ value: 81.296
1801
+ - type: mrr_at_1000
1802
+ value: 81.3
1803
+ - type: mrr_at_3
1804
+ value: 79.647
1805
+ - type: mrr_at_5
1806
+ value: 80.601
1807
+ - type: ndcg_at_1
1808
+ value: 73.63
1809
+ - type: ndcg_at_10
1810
+ value: 81.526
1811
+ - type: ndcg_at_100
1812
+ value: 83.544
1813
+ - type: ndcg_at_1000
1814
+ value: 83.86200000000001
1815
+ - type: ndcg_at_3
1816
+ value: 77.96300000000001
1817
+ - type: ndcg_at_5
1818
+ value: 79.888
1819
+ - type: precision_at_1
1820
+ value: 73.63
1821
+ - type: precision_at_10
1822
+ value: 12.325
1823
+ - type: precision_at_100
1824
+ value: 1.468
1825
+ - type: precision_at_1000
1826
+ value: 0.155
1827
+ - type: precision_at_3
1828
+ value: 33.857
1829
+ - type: precision_at_5
1830
+ value: 22.428
1831
+ - type: recall_at_1
1832
+ value: 63.864
1833
+ - type: recall_at_10
1834
+ value: 90.537
1835
+ - type: recall_at_100
1836
+ value: 97.985
1837
+ - type: recall_at_1000
1838
+ value: 99.679
1839
+ - type: recall_at_3
1840
+ value: 80.351
1841
+ - type: recall_at_5
1842
+ value: 85.697
1843
+ - task:
1844
+ type: Clustering
1845
+ dataset:
1846
+ type: None
1847
+ name: MTEB RedditClustering
1848
+ config: default
1849
+ split: test
1850
+ revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
1851
+ metrics:
1852
+ - type: v_measure
1853
+ value: 44.25321653229755
1854
+ - task:
1855
+ type: Clustering
1856
+ dataset:
1857
+ type: None
1858
+ name: MTEB RedditClusteringP2P
1859
+ config: default
1860
+ split: test
1861
+ revision: 282350215ef01743dc01b456c7f5241fa8937f16
1862
+ metrics:
1863
+ - type: v_measure
1864
+ value: 49.93875732877625
1865
+ - task:
1866
+ type: Retrieval
1867
+ dataset:
1868
+ type: None
1869
+ name: MTEB SCIDOCS
1870
+ config: default
1871
+ split: test
1872
+ revision: None
1873
+ metrics:
1874
+ - type: map_at_1
1875
+ value: 2.8979999999999997
1876
+ - type: map_at_10
1877
+ value: 7.376
1878
+ - type: map_at_100
1879
+ value: 8.902000000000001
1880
+ - type: map_at_1000
1881
+ value: 9.174
1882
+ - type: map_at_3
1883
+ value: 5.47
1884
+ - type: map_at_5
1885
+ value: 6.432
1886
+ - type: mrr_at_1
1887
+ value: 14.2
1888
+ - type: mrr_at_10
1889
+ value: 22.966
1890
+ - type: mrr_at_100
1891
+ value: 24.117
1892
+ - type: mrr_at_1000
1893
+ value: 24.209
1894
+ - type: mrr_at_3
1895
+ value: 20.033
1896
+ - type: mrr_at_5
1897
+ value: 21.532999999999998
1898
+ - type: ndcg_at_1
1899
+ value: 14.2
1900
+ - type: ndcg_at_10
1901
+ value: 13.016
1902
+ - type: ndcg_at_100
1903
+ value: 19.804
1904
+ - type: ndcg_at_1000
1905
+ value: 25.251
1906
+ - type: ndcg_at_3
1907
+ value: 12.395
1908
+ - type: ndcg_at_5
1909
+ value: 10.793999999999999
1910
+ - type: precision_at_1
1911
+ value: 14.2
1912
+ - type: precision_at_10
1913
+ value: 6.800000000000001
1914
+ - type: precision_at_100
1915
+ value: 1.6709999999999998
1916
+ - type: precision_at_1000
1917
+ value: 0.298
1918
+ - type: precision_at_3
1919
+ value: 11.767
1920
+ - type: precision_at_5
1921
+ value: 9.56
1922
+ - type: recall_at_1
1923
+ value: 2.8979999999999997
1924
+ - type: recall_at_10
1925
+ value: 13.753000000000002
1926
+ - type: recall_at_100
1927
+ value: 33.92
1928
+ - type: recall_at_1000
1929
+ value: 60.592
1930
+ - type: recall_at_3
1931
+ value: 7.163
1932
+ - type: recall_at_5
1933
+ value: 9.678
1934
+ - task:
1935
+ type: STS
1936
+ dataset:
1937
+ type: None
1938
+ name: MTEB SICK-R
1939
+ config: default
1940
+ split: test
1941
+ revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
1942
+ metrics:
1943
+ - type: cos_sim_pearson
1944
+ value: 76.86234724246499
1945
+ - type: cos_sim_spearman
1946
+ value: 67.59298171796401
1947
+ - type: euclidean_pearson
1948
+ value: 72.34370409015565
1949
+ - type: euclidean_spearman
1950
+ value: 67.59294254877997
1951
+ - type: manhattan_pearson
1952
+ value: 70.76123243638206
1953
+ - type: manhattan_spearman
1954
+ value: 66.86233305574997
1955
+ - task:
1956
+ type: STS
1957
+ dataset:
1958
+ type: None
1959
+ name: MTEB STS12
1960
+ config: default
1961
+ split: test
1962
+ revision: a0d554a64d88156834ff5ae9920b964011b16384
1963
+ metrics:
1964
+ - type: cos_sim_pearson
1965
+ value: 75.2193174164991
1966
+ - type: cos_sim_spearman
1967
+ value: 66.95885463258551
1968
+ - type: euclidean_pearson
1969
+ value: 70.69637254317986
1970
+ - type: euclidean_spearman
1971
+ value: 66.95991031425478
1972
+ - type: manhattan_pearson
1973
+ value: 67.25988575290648
1974
+ - type: manhattan_spearman
1975
+ value: 64.94406492662402
1976
+ - task:
1977
+ type: STS
1978
+ dataset:
1979
+ type: None
1980
+ name: MTEB STS13
1981
+ config: default
1982
+ split: test
1983
+ revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
1984
+ metrics:
1985
+ - type: cos_sim_pearson
1986
+ value: 77.42103332836258
1987
+ - type: cos_sim_spearman
1988
+ value: 78.48875534932043
1989
+ - type: euclidean_pearson
1990
+ value: 78.1930584097837
1991
+ - type: euclidean_spearman
1992
+ value: 78.48879315793262
1993
+ - type: manhattan_pearson
1994
+ value: 75.7705791679418
1995
+ - type: manhattan_spearman
1996
+ value: 76.01194506942352
1997
+ - task:
1998
+ type: STS
1999
+ dataset:
2000
+ type: None
2001
+ name: MTEB STS14
2002
+ config: default
2003
+ split: test
2004
+ revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
2005
+ metrics:
2006
+ - type: cos_sim_pearson
2007
+ value: 78.58218995046416
2008
+ - type: cos_sim_spearman
2009
+ value: 75.61279190671051
2010
+ - type: euclidean_pearson
2011
+ value: 77.58820759180631
2012
+ - type: euclidean_spearman
2013
+ value: 75.61278221440635
2014
+ - type: manhattan_pearson
2015
+ value: 76.12440001778819
2016
+ - type: manhattan_spearman
2017
+ value: 74.4269498969252
2018
+ - task:
2019
+ type: STS
2020
+ dataset:
2021
+ type: None
2022
+ name: MTEB STS15
2023
+ config: default
2024
+ split: test
2025
+ revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
2026
+ metrics:
2027
+ - type: cos_sim_pearson
2028
+ value: 82.2891641302121
2029
+ - type: cos_sim_spearman
2030
+ value: 82.73098262647434
2031
+ - type: euclidean_pearson
2032
+ value: 82.5188483930312
2033
+ - type: euclidean_spearman
2034
+ value: 82.73097334698637
2035
+ - type: manhattan_pearson
2036
+ value: 81.05168739270556
2037
+ - type: manhattan_spearman
2038
+ value: 81.10750061837136
2039
+ - task:
2040
+ type: STS
2041
+ dataset:
2042
+ type: None
2043
+ name: MTEB STS16
2044
+ config: default
2045
+ split: test
2046
+ revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
2047
+ metrics:
2048
+ - type: cos_sim_pearson
2049
+ value: 77.4670953467407
2050
+ - type: cos_sim_spearman
2051
+ value: 78.53536279187583
2052
+ - type: euclidean_pearson
2053
+ value: 77.6227824619736
2054
+ - type: euclidean_spearman
2055
+ value: 78.53591292409315
2056
+ - type: manhattan_pearson
2057
+ value: 76.24243879772493
2058
+ - type: manhattan_spearman
2059
+ value: 77.00775260881191
2060
+ - task:
2061
+ type: STS
2062
+ dataset:
2063
+ type: None
2064
+ name: MTEB STS17 (en-en)
2065
+ config: en-en
2066
+ split: test
2067
+ revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
2068
+ metrics:
2069
+ - type: cos_sim_pearson
2070
+ value: 86.19161153621691
2071
+ - type: cos_sim_spearman
2072
+ value: 86.86584556712556
2073
+ - type: euclidean_pearson
2074
+ value: 86.08114835853017
2075
+ - type: euclidean_spearman
2076
+ value: 86.86671808346402
2077
+ - type: manhattan_pearson
2078
+ value: 85.71042782796158
2079
+ - type: manhattan_spearman
2080
+ value: 86.76481453820853
2081
+ - task:
2082
+ type: STS
2083
+ dataset:
2084
+ type: None
2085
+ name: MTEB STS22 (en)
2086
+ config: en
2087
+ split: test
2088
+ revision: eea2b4fe26a775864c896887d910b76a8098ad3f
2089
+ metrics:
2090
+ - type: cos_sim_pearson
2091
+ value: 59.80818689506919
2092
+ - type: cos_sim_spearman
2093
+ value: 59.903534431363916
2094
+ - type: euclidean_pearson
2095
+ value: 60.967975393911466
2096
+ - type: euclidean_spearman
2097
+ value: 59.903534431363916
2098
+ - type: manhattan_pearson
2099
+ value: 59.348745545947104
2100
+ - type: manhattan_spearman
2101
+ value: 58.506942610232116
2102
+ - task:
2103
+ type: STS
2104
+ dataset:
2105
+ type: None
2106
+ name: MTEB STSBenchmark
2107
+ config: default
2108
+ split: test
2109
+ revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
2110
+ metrics:
2111
+ - type: cos_sim_pearson
2112
+ value: 80.61911955925173
2113
+ - type: cos_sim_spearman
2114
+ value: 79.18748066540941
2115
+ - type: euclidean_pearson
2116
+ value: 80.06976231938555
2117
+ - type: euclidean_spearman
2118
+ value: 79.18749912961366
2119
+ - type: manhattan_pearson
2120
+ value: 78.3922696264025
2121
+ - type: manhattan_spearman
2122
+ value: 77.68224365306664
2123
+ - task:
2124
+ type: Reranking
2125
+ dataset:
2126
+ type: None
2127
+ name: MTEB SciDocsRR
2128
+ config: default
2129
+ split: test
2130
+ revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
2131
+ metrics:
2132
+ - type: map
2133
+ value: 74.36063395414824
2134
+ - type: mrr
2135
+ value: 91.81411453470277
2136
+ - task:
2137
+ type: Retrieval
2138
+ dataset:
2139
+ type: None
2140
+ name: MTEB SciFact
2141
+ config: default
2142
+ split: test
2143
+ revision: 0228b52cf27578f30900b9e5271d331663a030d7
2144
+ metrics:
2145
+ - type: map_at_1
2146
+ value: 39.139
2147
+ - type: map_at_10
2148
+ value: 47.508
2149
+ - type: map_at_100
2150
+ value: 48.631
2151
+ - type: map_at_1000
2152
+ value: 48.691
2153
+ - type: map_at_3
2154
+ value: 44.926
2155
+ - type: map_at_5
2156
+ value: 46.093
2157
+ - type: mrr_at_1
2158
+ value: 41.333
2159
+ - type: mrr_at_10
2160
+ value: 49.289
2161
+ - type: mrr_at_100
2162
+ value: 50.209
2163
+ - type: mrr_at_1000
2164
+ value: 50.261
2165
+ - type: mrr_at_3
2166
+ value: 46.944
2167
+ - type: mrr_at_5
2168
+ value: 47.978
2169
+ - type: ndcg_at_1
2170
+ value: 41.333
2171
+ - type: ndcg_at_10
2172
+ value: 52.306
2173
+ - type: ndcg_at_100
2174
+ value: 57.403999999999996
2175
+ - type: ndcg_at_1000
2176
+ value: 58.733999999999995
2177
+ - type: ndcg_at_3
2178
+ value: 47.113
2179
+ - type: ndcg_at_5
2180
+ value: 48.966
2181
+ - type: precision_at_1
2182
+ value: 41.333
2183
+ - type: precision_at_10
2184
+ value: 7.167
2185
+ - type: precision_at_100
2186
+ value: 0.997
2187
+ - type: precision_at_1000
2188
+ value: 0.11100000000000002
2189
+ - type: precision_at_3
2190
+ value: 18.333
2191
+ - type: precision_at_5
2192
+ value: 12.0
2193
+ - type: recall_at_1
2194
+ value: 39.139
2195
+ - type: recall_at_10
2196
+ value: 65.84400000000001
2197
+ - type: recall_at_100
2198
+ value: 88.94999999999999
2199
+ - type: recall_at_1000
2200
+ value: 98.867
2201
+ - type: recall_at_3
2202
+ value: 51.222
2203
+ - type: recall_at_5
2204
+ value: 55.72200000000001
2205
+ - task:
2206
+ type: PairClassification
2207
+ dataset:
2208
+ type: None
2209
+ name: MTEB SprintDuplicateQuestions
2210
+ config: default
2211
+ split: test
2212
+ revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
2213
+ metrics:
2214
+ - type: cos_sim_accuracy
2215
+ value: 99.66831683168317
2216
+ - type: cos_sim_ap
2217
+ value: 89.56758407722171
2218
+ - type: cos_sim_f1
2219
+ value: 82.97029702970298
2220
+ - type: cos_sim_precision
2221
+ value: 82.15686274509804
2222
+ - type: cos_sim_recall
2223
+ value: 83.8
2224
+ - type: dot_accuracy
2225
+ value: 99.66831683168317
2226
+ - type: dot_ap
2227
+ value: 89.56758407722171
2228
+ - type: dot_f1
2229
+ value: 82.97029702970298
2230
+ - type: dot_precision
2231
+ value: 82.15686274509804
2232
+ - type: dot_recall
2233
+ value: 83.8
2234
+ - type: euclidean_accuracy
2235
+ value: 99.66831683168317
2236
+ - type: euclidean_ap
2237
+ value: 89.56758407722171
2238
+ - type: euclidean_f1
2239
+ value: 82.97029702970298
2240
+ - type: euclidean_precision
2241
+ value: 82.15686274509804
2242
+ - type: euclidean_recall
2243
+ value: 83.8
2244
+ - type: manhattan_accuracy
2245
+ value: 99.65445544554456
2246
+ - type: manhattan_ap
2247
+ value: 88.81637821295462
2248
+ - type: manhattan_f1
2249
+ value: 81.9047619047619
2250
+ - type: manhattan_precision
2251
+ value: 82.1105527638191
2252
+ - type: manhattan_recall
2253
+ value: 81.69999999999999
2254
+ - type: max_accuracy
2255
+ value: 99.66831683168317
2256
+ - type: max_ap
2257
+ value: 89.56758407722171
2258
+ - type: max_f1
2259
+ value: 82.97029702970298
2260
+ - task:
2261
+ type: Clustering
2262
+ dataset:
2263
+ type: None
2264
+ name: MTEB StackExchangeClustering
2265
+ config: default
2266
+ split: test
2267
+ revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
2268
+ metrics:
2269
+ - type: v_measure
2270
+ value: 47.34055809539011
2271
+ - task:
2272
+ type: Clustering
2273
+ dataset:
2274
+ type: None
2275
+ name: MTEB StackExchangeClusteringP2P
2276
+ config: default
2277
+ split: test
2278
+ revision: 815ca46b2622cec33ccafc3735d572c266efdb44
2279
+ metrics:
2280
+ - type: v_measure
2281
+ value: 29.658298502445096
2282
+ - task:
2283
+ type: Reranking
2284
+ dataset:
2285
+ type: None
2286
+ name: MTEB StackOverflowDupQuestions
2287
+ config: default
2288
+ split: test
2289
+ revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
2290
+ metrics:
2291
+ - type: map
2292
+ value: 43.989840235812004
2293
+ - type: mrr
2294
+ value: 44.506899350649356
2295
+ - task:
2296
+ type: Summarization
2297
+ dataset:
2298
+ type: None
2299
+ name: MTEB SummEval
2300
+ config: default
2301
+ split: test
2302
+ revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
2303
+ metrics:
2304
+ - type: cos_sim_pearson
2305
+ value: 31.29667664654959
2306
+ - type: cos_sim_spearman
2307
+ value: 29.818596667773882
2308
+ - type: dot_pearson
2309
+ value: 31.296676647072026
2310
+ - type: dot_spearman
2311
+ value: 29.779857187330265
2312
+ - task:
2313
+ type: Retrieval
2314
+ dataset:
2315
+ type: None
2316
+ name: MTEB TRECCOVID
2317
+ config: default
2318
+ split: test
2319
+ revision: None
2320
+ metrics:
2321
+ - type: map_at_1
2322
+ value: 0.155
2323
+ - type: map_at_10
2324
+ value: 0.8330000000000001
2325
+ - type: map_at_100
2326
+ value: 4.590000000000001
2327
+ - type: map_at_1000
2328
+ value: 11.683
2329
+ - type: map_at_3
2330
+ value: 0.334
2331
+ - type: map_at_5
2332
+ value: 0.466
2333
+ - type: mrr_at_1
2334
+ value: 60.0
2335
+ - type: mrr_at_10
2336
+ value: 68.136
2337
+ - type: mrr_at_100
2338
+ value: 68.703
2339
+ - type: mrr_at_1000
2340
+ value: 68.703
2341
+ - type: mrr_at_3
2342
+ value: 66.0
2343
+ - type: mrr_at_5
2344
+ value: 66.4
2345
+ - type: ndcg_at_1
2346
+ value: 54.0
2347
+ - type: ndcg_at_10
2348
+ value: 44.658
2349
+ - type: ndcg_at_100
2350
+ value: 33.977000000000004
2351
+ - type: ndcg_at_1000
2352
+ value: 30.621
2353
+ - type: ndcg_at_3
2354
+ value: 48.939
2355
+ - type: ndcg_at_5
2356
+ value: 45.396
2357
+ - type: precision_at_1
2358
+ value: 57.99999999999999
2359
+ - type: precision_at_10
2360
+ value: 47.4
2361
+ - type: precision_at_100
2362
+ value: 35.82
2363
+ - type: precision_at_1000
2364
+ value: 14.876000000000001
2365
+ - type: precision_at_3
2366
+ value: 50.0
2367
+ - type: precision_at_5
2368
+ value: 45.6
2369
+ - type: recall_at_1
2370
+ value: 0.155
2371
+ - type: recall_at_10
2372
+ value: 1.0670000000000002
2373
+ - type: recall_at_100
2374
+ value: 7.651
2375
+ - type: recall_at_1000
2376
+ value: 29.537000000000003
2377
+ - type: recall_at_3
2378
+ value: 0.35500000000000004
2379
+ - type: recall_at_5
2380
+ value: 0.518
2381
+ - task:
2382
+ type: Retrieval
2383
+ dataset:
2384
+ type: None
2385
+ name: MTEB Touche2020
2386
+ config: default
2387
+ split: test
2388
+ revision: a34f9a33db75fa0cbb21bb5cfc3dae8dc8bec93f
2389
+ metrics:
2390
+ - type: map_at_1
2391
+ value: 2.426
2392
+ - type: map_at_10
2393
+ value: 8.38
2394
+ - type: map_at_100
2395
+ value: 14.308000000000002
2396
+ - type: map_at_1000
2397
+ value: 15.956000000000001
2398
+ - type: map_at_3
2399
+ value: 4.596
2400
+ - type: map_at_5
2401
+ value: 6.1339999999999995
2402
+ - type: mrr_at_1
2403
+ value: 32.653
2404
+ - type: mrr_at_10
2405
+ value: 44.577
2406
+ - type: mrr_at_100
2407
+ value: 45.754
2408
+ - type: mrr_at_1000
2409
+ value: 45.754
2410
+ - type: mrr_at_3
2411
+ value: 41.156
2412
+ - type: mrr_at_5
2413
+ value: 43.401
2414
+ - type: ndcg_at_1
2415
+ value: 28.571
2416
+ - type: ndcg_at_10
2417
+ value: 21.116
2418
+ - type: ndcg_at_100
2419
+ value: 35.193000000000005
2420
+ - type: ndcg_at_1000
2421
+ value: 46.989
2422
+ - type: ndcg_at_3
2423
+ value: 24.708
2424
+ - type: ndcg_at_5
2425
+ value: 23.594
2426
+ - type: precision_at_1
2427
+ value: 32.653
2428
+ - type: precision_at_10
2429
+ value: 19.592000000000002
2430
+ - type: precision_at_100
2431
+ value: 8.265
2432
+ - type: precision_at_1000
2433
+ value: 1.5939999999999999
2434
+ - type: precision_at_3
2435
+ value: 27.211000000000002
2436
+ - type: precision_at_5
2437
+ value: 25.306
2438
+ - type: recall_at_1
2439
+ value: 2.426
2440
+ - type: recall_at_10
2441
+ value: 13.691
2442
+ - type: recall_at_100
2443
+ value: 49.446
2444
+ - type: recall_at_1000
2445
+ value: 86.124
2446
+ - type: recall_at_3
2447
+ value: 5.67
2448
+ - type: recall_at_5
2449
+ value: 8.506
2450
+ - task:
2451
+ type: Classification
2452
+ dataset:
2453
+ type: None
2454
+ name: MTEB ToxicConversationsClassification
2455
+ config: default
2456
+ split: test
2457
+ revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
2458
+ metrics:
2459
+ - type: accuracy
2460
+ value: 79.2904
2461
+ - type: ap
2462
+ value: 19.73734798884487
2463
+ - type: f1
2464
+ value: 61.89018130098357
2465
+ - task:
2466
+ type: Classification
2467
+ dataset:
2468
+ type: None
2469
+ name: MTEB TweetSentimentExtractionClassification
2470
+ config: default
2471
+ split: test
2472
+ revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
2473
+ metrics:
2474
+ - type: accuracy
2475
+ value: 60.97906055461234
2476
+ - type: f1
2477
+ value: 61.25225658586279
2478
+ - task:
2479
+ type: Clustering
2480
+ dataset:
2481
+ type: None
2482
+ name: MTEB TwentyNewsgroupsClustering
2483
+ config: default
2484
+ split: test
2485
+ revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
2486
+ metrics:
2487
+ - type: v_measure
2488
+ value: 41.859245341604115
2489
+ - task:
2490
+ type: PairClassification
2491
+ dataset:
2492
+ type: None
2493
+ name: MTEB TwitterSemEval2015
2494
+ config: default
2495
+ split: test
2496
+ revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
2497
+ metrics:
2498
+ - type: cos_sim_accuracy
2499
+ value: 83.4714192048638
2500
+ - type: cos_sim_ap
2501
+ value: 64.50474781834589
2502
+ - type: cos_sim_f1
2503
+ value: 60.58070866141732
2504
+ - type: cos_sim_precision
2505
+ value: 56.75426463808206
2506
+ - type: cos_sim_recall
2507
+ value: 64.96042216358839
2508
+ - type: dot_accuracy
2509
+ value: 83.4714192048638
2510
+ - type: dot_ap
2511
+ value: 64.50474781834589
2512
+ - type: dot_f1
2513
+ value: 60.58070866141732
2514
+ - type: dot_precision
2515
+ value: 56.75426463808206
2516
+ - type: dot_recall
2517
+ value: 64.96042216358839
2518
+ - type: euclidean_accuracy
2519
+ value: 83.4714192048638
2520
+ - type: euclidean_ap
2521
+ value: 64.50474781834589
2522
+ - type: euclidean_f1
2523
+ value: 60.58070866141732
2524
+ - type: euclidean_precision
2525
+ value: 56.75426463808206
2526
+ - type: euclidean_recall
2527
+ value: 64.96042216358839
2528
+ - type: manhattan_accuracy
2529
+ value: 83.48334028729809
2530
+ - type: manhattan_ap
2531
+ value: 64.6227449383717
2532
+ - type: manhattan_f1
2533
+ value: 60.88942307692308
2534
+ - type: manhattan_precision
2535
+ value: 55.916114790286976
2536
+ - type: manhattan_recall
2537
+ value: 66.83377308707124
2538
+ - type: max_accuracy
2539
+ value: 83.48334028729809
2540
+ - type: max_ap
2541
+ value: 64.6227449383717
2542
+ - type: max_f1
2543
+ value: 60.88942307692308
2544
+ - task:
2545
+ type: PairClassification
2546
+ dataset:
2547
+ type: None
2548
+ name: MTEB TwitterURLCorpus
2549
+ config: default
2550
+ split: test
2551
+ revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
2552
+ metrics:
2553
+ - type: cos_sim_accuracy
2554
+ value: 87.58295494236815
2555
+ - type: cos_sim_ap
2556
+ value: 83.22579648788027
2557
+ - type: cos_sim_f1
2558
+ value: 75.27357054859048
2559
+ - type: cos_sim_precision
2560
+ value: 71.09514031485284
2561
+ - type: cos_sim_recall
2562
+ value: 79.97382198952879
2563
+ - type: dot_accuracy
2564
+ value: 87.58295494236815
2565
+ - type: dot_ap
2566
+ value: 83.22579579937255
2567
+ - type: dot_f1
2568
+ value: 75.27357054859048
2569
+ - type: dot_precision
2570
+ value: 71.09514031485284
2571
+ - type: dot_recall
2572
+ value: 79.97382198952879
2573
+ - type: euclidean_accuracy
2574
+ value: 87.58295494236815
2575
+ - type: euclidean_ap
2576
+ value: 83.22580643443949
2577
+ - type: euclidean_f1
2578
+ value: 75.27357054859048
2579
+ - type: euclidean_precision
2580
+ value: 71.09514031485284
2581
+ - type: euclidean_recall
2582
+ value: 79.97382198952879
2583
+ - type: manhattan_accuracy
2584
+ value: 87.57325260992742
2585
+ - type: manhattan_ap
2586
+ value: 83.05240665725778
2587
+ - type: manhattan_f1
2588
+ value: 75.09726237641432
2589
+ - type: manhattan_precision
2590
+ value: 69.99800385920554
2591
+ - type: manhattan_recall
2592
+ value: 80.99784416384355
2593
+ - type: max_accuracy
2594
+ value: 87.58295494236815
2595
+ - type: max_ap
2596
+ value: 83.22580643443949
2597
+ - type: max_f1
2598
+ value: 75.27357054859048
2599
+ ---