turnip commited on
Commit
6c1e65a
·
1 Parent(s): 3eb342f

Huggingface course unit 1

Browse files
README.md CHANGED
@@ -10,7 +10,7 @@ model-index:
10
  results:
11
  - metrics:
12
  - type: mean_reward
13
- value: 286.03 +/- 20.88
14
  name: mean_reward
15
  task:
16
  type: reinforcement-learning
 
10
  results:
11
  - metrics:
12
  - type: mean_reward
13
+ value: 265.14 +/- 22.36
14
  name: mean_reward
15
  task:
16
  type: reinforcement-learning
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd3ae71c9e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd3ae71ca70>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd3ae71cb00>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd3ae71cb90>", "_build": "<function ActorCriticPolicy._build at 0x7fd3ae71cc20>", "forward": "<function ActorCriticPolicy.forward at 0x7fd3ae71ccb0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd3ae71cd40>", "_predict": "<function ActorCriticPolicy._predict at 0x7fd3ae71cdd0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd3ae71ce60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd3ae71cef0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd3ae71cf80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fd3ae7704e0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1653330206.230453, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAgGiTPQkwMz/OSkc9w/PLvuO9rT19ISK6AAAAAAAAAADm+4I+Tx1GPvpVk75XuYm+d+jouwbrzr0AAAAAAAAAAGZVyL24Nsq7rwmUPBPfgTz7RSi9joVcPQAAgD8AAAAAAFevPGmpA7yBn0K+EYyEPEiKbj24a169AACAPwAAgD/+QYy+2lMgvfQqJrzX2QE60qeSPqpPETwAAIA/AACAP9PASr78c0g/iISvvbl0xb6ECT6+FegaPgAAAAAAAAAAgCSqPTuz6D2DOc+8FUGXvjsRlD2ivBi9AAAAAAAAAAAzkki9XPteukucSLqy46s1C6kDuq5ZaDkAAIA/AACAPwA42jtx7R+7isIrvOoOmjwF+De8F4CEPQAAgD8AAIA/xtNUPodrvj7MsZ6+R4KCvvNzEj6ysei9AAAAAAAAAACtFw8+ZUWQPriDWL4EHJy+yqSEPZJTIL4AAAAAAAAAAAaNUj5zLvo+Up1DvtK8sL7JWek9GzROvQAAAAAAAAAAMxLMvGyE+rvVE+Y7Dk+XPCSyQ704H309AACAPwAAgD9msva80tLfPJ8oQD7d82++JYNDPUgMRrwAAAAAAAAAAJq4gr3Pv0a8UghvPtQWsr3zKmu9EqGSvgAAgD8AAIA/GrsHPQm7ED56vFC+FD+BvqHVu72WGeI4AAAAAAAAAACUdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVRhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI4iNiSqQUckCUhpRSlIwBbJRNAAGMAXSUR0CiSS9qk/KRdX2UKGgGaAloD0MIy7kUV9WVcUCUhpRSlGgVS9FoFkdAokk1OTJQtXV9lChoBmgJaA9DCAUx0LXv1nJAlIaUUpRoFUvpaBZHQKJJSDnNgSh1fZQoaAZoCWgPQwg3UUtz61dzQJSGlFKUaBVL4mgWR0CiSWgTqSowdX2UKGgGaAloD0MIf2ySH3Hsc0CUhpRSlGgVTQIBaBZHQKJJpMeOn2t1fZQoaAZoCWgPQwjsMCb9/fdxQJSGlFKUaBVNCQFoFkdAokmiya/h2nV9lChoBmgJaA9DCD8Cf/i503FAlIaUUpRoFU0FAWgWR0CiSen0se4kdX2UKGgGaAloD0MI2C5tOKyUb0CUhpRSlGgVS/JoFkdAokoYOUdJa3V9lChoBmgJaA9DCG7A54cRk3JAlIaUUpRoFU0IAWgWR0CiSkPfj0cwdX2UKGgGaAloD0MIa4MT0a8sc0CUhpRSlGgVTQ0BaBZHQKJKvCJGe+V1fZQoaAZoCWgPQwh/+WTFsFRyQJSGlFKUaBVL22gWR0CiStxIjGDMdX2UKGgGaAloD0MIpfeNr71QckCUhpRSlGgVS+ZoFkdAoksIp6QeWHV9lChoBmgJaA9DCHeE04JXcnFAlIaUUpRoFU08AWgWR0CiS3S8BdUsdX2UKGgGaAloD0MI4j0HliPEUECUhpRSlGgVS85oFkdAokujWTX8O3V9lChoBmgJaA9DCIl6wae5a3BAlIaUUpRoFUveaBZHQKJL2xyGSIR1fZQoaAZoCWgPQwib54h8FyJzQJSGlFKUaBVNDgFoFkdAokv//cWTHXV9lChoBmgJaA9DCEfjUL/LmXFAlIaUUpRoFUv3aBZHQKJMPTuOS4h1fZQoaAZoCWgPQwhlOJ7PwK1xQJSGlFKUaBVL2GgWR0CiTIpF9a2XdX2UKGgGaAloD0MIdJfEWRG9cUCUhpRSlGgVS/ZoFkdAokyfhOxja3V9lChoBmgJaA9DCPjfSnZsaHJAlIaUUpRoFUvfaBZHQKJNC52hZhd1fZQoaAZoCWgPQwgIza57Kz9vQJSGlFKUaBVL7mgWR0CiTQwA2hqTdX2UKGgGaAloD0MIa4Ko+4Afc0CUhpRSlGgVTfICaBZHQKJNEvkBCD51fZQoaAZoCWgPQwjACBoziS5wQJSGlFKUaBVNPgFoFkdAok1Q287IUHV9lChoBmgJaA9DCFD+7h31enFAlIaUUpRoFUvnaBZHQKJNpnh86WB1fZQoaAZoCWgPQwjaAGxAhOBvQJSGlFKUaBVL5GgWR0CiTbrnTy8SdX2UKGgGaAloD0MINQcI5miCbkCUhpRSlGgVS91oFkdAok5A2OyVwHV9lChoBmgJaA9DCKhxb35Dvm9AlIaUUpRoFU0IAWgWR0CiTl0ZNwirdX2UKGgGaAloD0MI+N10y45acUCUhpRSlGgVS+BoFkdAok56hFmWdHV9lChoBmgJaA9DCG8O12qP+nFAlIaUUpRoFUvqaBZHQKJPQELYwqR1fZQoaAZoCWgPQwgDsAERYrlwQJSGlFKUaBVNAQFoFkdAok9NQfp2U3V9lChoBmgJaA9DCFysqME043BAlIaUUpRoFUvbaBZHQKJPW/TLGJh1fZQoaAZoCWgPQwiNfF7xlEJwQJSGlFKUaBVNFwFoFkdAok9w0sOG03V9lChoBmgJaA9DCEKZRpML2m1AlIaUUpRoFU3oAWgWR0CiT7zYNAkcdX2UKGgGaAloD0MIgzP4+wUacECUhpRSlGgVS+RoFkdAolA04T9KmXV9lChoBmgJaA9DCLCRJAjXcHBAlIaUUpRoFUv9aBZHQKJQRXdTHbR1fZQoaAZoCWgPQwjknxnEx4xyQJSGlFKUaBVNDQFoFkdAolCDcoH9nHV9lChoBmgJaA9DCIZ1493R3HFAlIaUUpRoFUvoaBZHQKJQowevIOp1fZQoaAZoCWgPQwgziXrBZyFyQJSGlFKUaBVNAQFoFkdAolENfTkQw3V9lChoBmgJaA9DCN9rCI5LmnNAlIaUUpRoFU08AWgWR0CiUR1aGHpKdX2UKGgGaAloD0MIG2g+526PbUCUhpRSlGgVS+loFkdAolFK0fHPvHV9lChoBmgJaA9DCIup9BPORnJAlIaUUpRoFU0NAWgWR0CiWsPF3pwCdX2UKGgGaAloD0MI2+BE9Cu4ckCUhpRSlGgVTS4BaBZHQKJbYA0bcXZ1fZQoaAZoCWgPQwit+8dCdG1zQJSGlFKUaBVL/mgWR0CiW5cyWRigdX2UKGgGaAloD0MIBcWPMbdFc0CUhpRSlGgVTQoBaBZHQKJbtsUqQRx1fZQoaAZoCWgPQwgYRKSmXe9uQJSGlFKUaBVL/GgWR0CiW7cwYcebdX2UKGgGaAloD0MIvmvQlx5pcUCUhpRSlGgVTRQBaBZHQKJb8kGiYb91fZQoaAZoCWgPQwiQSrGjcWVwQJSGlFKUaBVNAQFoFkdAolwTh73PA3V9lChoBmgJaA9DCLQ8D+7ONHFAlIaUUpRoFUvtaBZHQKJcWe8PFvR1fZQoaAZoCWgPQwhP5h99E8RgQJSGlFKUaBVN6ANoFkdAolxdNWU8m3V9lChoBmgJaA9DCEBLV7AN7m1AlIaUUpRoFUv1aBZHQKJcZARChOB1fZQoaAZoCWgPQwi8AzxpIRxzQJSGlFKUaBVL+WgWR0CiXK5jx0+1dX2UKGgGaAloD0MIM4y7QTQAdECUhpRSlGgVS9xoFkdAolza+36RAHV9lChoBmgJaA9DCED5u3dUgHJAlIaUUpRoFU0OAWgWR0CiXQQosqaxdX2UKGgGaAloD0MINNk/T8Mtc0CUhpRSlGgVS/toFkdAol0mh/RVqHV9lChoBmgJaA9DCAx1WOHWYnJAlIaUUpRoFUv6aBZHQKJdV7LMcIZ1fZQoaAZoCWgPQwh7M2q+Sh5yQJSGlFKUaBVL42gWR0CiXZedbxEwdX2UKGgGaAloD0MIXU4JiMmebUCUhpRSlGgVS+toFkdAol45nvlU63V9lChoBmgJaA9DCEPIef/fgnFAlIaUUpRoFUviaBZHQKJeTNlAeJZ1fZQoaAZoCWgPQwgD7KNTV1RwQJSGlFKUaBVL7mgWR0CiXo/OlfqpdX2UKGgGaAloD0MIuVM6WP9AbkCUhpRSlGgVS9RoFkdAol6ZT4tYjnV9lChoBmgJaA9DCEax3NLqxnBAlIaUUpRoFU0GAWgWR0CiXt+jmCAddX2UKGgGaAloD0MIB33p7Q/YckCUhpRSlGgVS+FoFkdAol8PP5YYBXV9lChoBmgJaA9DCLVRnQ5kLHNAlIaUUpRoFUvzaBZHQKJfR349HMF1fZQoaAZoCWgPQwhIUz2ZPx9yQJSGlFKUaBVL22gWR0CiX1uf29L6dX2UKGgGaAloD0MIWYl5VlJJc0CUhpRSlGgVTQQBaBZHQKJfjurp7kZ1fZQoaAZoCWgPQwhM/5JUpixvQJSGlFKUaBVL5GgWR0CiX7HcUM5PdX2UKGgGaAloD0MIswxxrAs6cUCUhpRSlGgVS+FoFkdAol/84tHx0HV9lChoBmgJaA9DCAGKkSVz8XBAlIaUUpRoFUv9aBZHQKJgLdld1Md1fZQoaAZoCWgPQwiUMqmhzflxQJSGlFKUaBVNZAFoFkdAomBLi++M63V9lChoBmgJaA9DCB+8dmkD0HJAlIaUUpRoFUvhaBZHQKJgccEvCdl1fZQoaAZoCWgPQwgSoKaW7RVxQJSGlFKUaBVNQwFoFkdAomFztE5QxnV9lChoBmgJaA9DCP7XuWkzLnFAlIaUUpRoFU0AAWgWR0CiYYqO1fE5dX2UKGgGaAloD0MIwk6xalA6cUCUhpRSlGgVS+1oFkdAomGr0rbxmXV9lChoBmgJaA9DCKDDfHlBM3JAlIaUUpRoFU0MAWgWR0CiYce3Ytg8dX2UKGgGaAloD0MIPpY+dIG9cUCUhpRSlGgVS9doFkdAomIrsyBTXXV9lChoBmgJaA9DCJRrCmQ2RnJAlIaUUpRoFUvPaBZHQKJiQcXm/351fZQoaAZoCWgPQwgKE0azco1xQJSGlFKUaBVNBwFoFkdAomJPtF8XvnV9lChoBmgJaA9DCA1yF2GKHXFAlIaUUpRoFUv6aBZHQKJiVld1Mdt1fZQoaAZoCWgPQwjOcAM+P6ZjQJSGlFKUaBVN6ANoFkdAomJczoEB83V9lChoBmgJaA9DCDc0ZaefnHJAlIaUUpRoFU00AWgWR0CiYo4eT3ZgdX2UKGgGaAloD0MI0O/7Ny/5cECUhpRSlGgVTQIBaBZHQKJin07r9l51fZQoaAZoCWgPQwiTyamdYVFxQJSGlFKUaBVL9WgWR0CiYsr8R+SbdX2UKGgGaAloD0MIuOo6VJOhckCUhpRSlGgVS99oFkdAomLNm16VuHV9lChoBmgJaA9DCI3PZP+8wW9AlIaUUpRoFUvuaBZHQKJjOhGpdbB1fZQoaAZoCWgPQwhaZaa0vjNwQJSGlFKUaBVNEAFoFkdAomN91B+nZXV9lChoBmgJaA9DCAuallhZ8nJAlIaUUpRoFUvzaBZHQKJkYg9vCMx1fZQoaAZoCWgPQwg5tMh2Ph9uQJSGlFKUaBVL+WgWR0CiZIsp5NXYdX2UKGgGaAloD0MIsVBrmncqb0CUhpRSlGgVS9xoFkdAomTMNOM2nHV9lChoBmgJaA9DCP63kh3b/HJAlIaUUpRoFU1hAWgWR0CiZOIePq9odX2UKGgGaAloD0MIBcQkXEjPcUCUhpRSlGgVS+FoFkdAomT52OhkAnV9lChoBmgJaA9DCOTcJtzrbHBAlIaUUpRoFUvoaBZHQKJlIsH0K7Z1fZQoaAZoCWgPQwgWwmosoVlzQJSGlFKUaBVL72gWR0CiZULXtjTbdX2UKGgGaAloD0MI1LX2PlU8cUCUhpRSlGgVS+NoFkdAomVe0w8GLXV9lChoBmgJaA9DCG0dHOwNmHBAlIaUUpRoFU0wAWgWR0CiZZ4yfthNdX2UKGgGaAloD0MIrOKNzONeckCUhpRSlGgVTSgBaBZHQKJmF7tRekZ1fZQoaAZoCWgPQwhKXwg5L59wQJSGlFKUaBVNEwFoFkdAomYdzQu27XV9lChoBmgJaA9DCIRkARP4cXFAlIaUUpRoFUvgaBZHQKJmPOwgTyt1fZQoaAZoCWgPQwjyCG6kLLFyQJSGlFKUaBVNDwFoFkdAomZO1KGtZHV9lChoBmgJaA9DCBNiLqnamXBAlIaUUpRoFUvmaBZHQKJmmAYpDu11fZQoaAZoCWgPQwhD44kgDtBwQJSGlFKUaBVNNwFoFkdAombFlK9PDnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 276, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd3ae71c9e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd3ae71ca70>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd3ae71cb00>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd3ae71cb90>", "_build": "<function ActorCriticPolicy._build at 0x7fd3ae71cc20>", "forward": "<function ActorCriticPolicy.forward at 0x7fd3ae71ccb0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd3ae71cd40>", "_predict": "<function ActorCriticPolicy._predict at 0x7fd3ae71cdd0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd3ae71ce60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd3ae71cef0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd3ae71cf80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fd3ae7704e0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1653331639.6553693, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAo2CTvjaalT/DRYm+254Av5hn4767XbQ9AAAAAAAAAADNvZy8OC7Fu8wbD73GAfS9iW0jvc68zL4AAIA/AACAPxrfZT0pmFG6COVOOBf2mLNuAYi7Zv9ttwAAAAAAAIA/zS0BPQgStD/bVx0/NSq3vSO4krzPRAc8AAAAAAAAAABNWUc9u+qHvIXt27xcea282WfbvZ4nHL4AAIA/AACAPwAr1by852U91POQPT+wo75wkWo9WoqfugAAAAAAAAAAk+E1vuizND9S4aw+t/TivpIUrrw1tW0+AAAAAAAAAAAzmVw8BA2xP0C54T7+q9++kdMPvBrhZ7wAAAAAAAAAADPw4Dyu9Za6EiiCti+MWbHBy/u5RuOWNQAAgD8AAIA/zR6LvcE42j4+pws+Af7SvnSy9jsmXCg9AAAAAAAAAADm1hI9XFRrPXOfqL15Goy+1Iz5PHUBe70AAAAAAAAAAM2TkTyinck+WfkDPl0Yxb5XC7I9U9xMPAAAAAAAAAAAmkdgvKIFmT9dLEq9QeAFvxO9i71Yamq9AAAAAAAAAAANVfq9mrTbPp131T5mk92+VnsePlWtzj0AAAAAAAAAACZ2DL4CHUk/DMsCPreP8b6FZPy9ANLwPQAAAAAAAAAA+DKDvpAVoj9n2aO+r9bxvp1M5b5KVte8AAAAAAAAAACUdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVJRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIfCqnPSWPcECUhpRSlIwBbJRL6owBdJRHQKy9zSv1UVB1fZQoaAZoCWgPQwhMiSR6WZZzQJSGlFKUaBVL1GgWR0Csvc1nmJWOdX2UKGgGaAloD0MIYvVHGAZBc0CUhpRSlGgVTRUBaBZHQKy+KvW6K+B1fZQoaAZoCWgPQwjtD5TbdkNyQJSGlFKUaBVL+GgWR0CsvjGwA2hqdX2UKGgGaAloD0MIvXDnwogQckCUhpRSlGgVS8doFkdArL5mBQN1AHV9lChoBmgJaA9DCJih8UQQfXBAlIaUUpRoFUvfaBZHQKy+i7HyVfN1fZQoaAZoCWgPQwjmz7cFC6BwQJSGlFKUaBVLyGgWR0CsvqzYVZcLdX2UKGgGaAloD0MIoBUYsvr3c0CUhpRSlGgVS+NoFkdArL7KB7NSqHV9lChoBmgJaA9DCD9UGjHzwHBAlIaUUpRoFUvlaBZHQKy+3Ijnmq51fZQoaAZoCWgPQwhLOsrBLHdzQJSGlFKUaBVL42gWR0CsvzDoyKvWdX2UKGgGaAloD0MI9IdmnpymcECUhpRSlGgVS8loFkdArL9WQXAM2HV9lChoBmgJaA9DCHY3T3WI0HJAlIaUUpRoFUvbaBZHQKy/Wb961LJ1fZQoaAZoCWgPQwh+x/DYTyNyQJSGlFKUaBVL/GgWR0Csv4N+so2GdX2UKGgGaAloD0MI66f/rLnPckCUhpRSlGgVS/doFkdArL+t/H5rQHV9lChoBmgJaA9DCOZXc4DgDHFAlIaUUpRoFUvZaBZHQKy/4d92HL11fZQoaAZoCWgPQwh7vJAODw1zQJSGlFKUaBVLz2gWR0CswC5GjKxLdX2UKGgGaAloD0MIECOER1vVc0CUhpRSlGgVS8hoFkdArMB1eBxxUHV9lChoBmgJaA9DCOvgYG+iV3NAlIaUUpRoFUvqaBZHQKzAg3l0YCR1fZQoaAZoCWgPQwh/pIgMa2xzQJSGlFKUaBVL32gWR0CswLkOqebvdX2UKGgGaAloD0MIS80eaMXUcUCUhpRSlGgVS9BoFkdArMDJwKjSHHV9lChoBmgJaA9DCH6QZcHEdHFAlIaUUpRoFUvLaBZHQKzA4NqgyuZ1fZQoaAZoCWgPQwh+xoUDoZ5wQJSGlFKUaBVLz2gWR0CswQ2qT8pDdX2UKGgGaAloD0MIpFUt6aiAckCUhpRSlGgVS85oFkdArMEn2GqPwXV9lChoBmgJaA9DCAspP6k2snBAlIaUUpRoFUvmaBZHQKzBiREnb7F1fZQoaAZoCWgPQwiZ1xGH7D1xQJSGlFKUaBVLz2gWR0Cswcuf/WDpdX2UKGgGaAloD0MIvceZJqzucECUhpRSlGgVS8RoFkdArMHaBshxHXV9lChoBmgJaA9DCIjyBS3kv3FAlIaUUpRoFUvmaBZHQKzB5v2GqPx1fZQoaAZoCWgPQwgJ/OHn/0VzQJSGlFKUaBVL8mgWR0CswjEKE385dX2UKGgGaAloD0MI7rQ1IhiZckCUhpRSlGgVS+VoFkdArMKo75mAb3V9lChoBmgJaA9DCL01sFVCKXBAlIaUUpRoFUvQaBZHQKzMGEwFkhB1fZQoaAZoCWgPQwiV8e8z7s9xQJSGlFKUaBVL2mgWR0CszCxLbpNcdX2UKGgGaAloD0MIGF+0x0tccUCUhpRSlGgVS/RoFkdArMw2CCjDbnV9lChoBmgJaA9DCN+/eXEiNnNAlIaUUpRoFUvpaBZHQKzMp238XN11fZQoaAZoCWgPQwgFGJY/X3xxQJSGlFKUaBVL32gWR0CszLEAo5PudX2UKGgGaAloD0MIoFBPH8Fkc0CUhpRSlGgVS/doFkdArMzl1W8yvnV9lChoBmgJaA9DCCRfCaREt3FAlIaUUpRoFUvnaBZHQKzNHOGj9GZ1fZQoaAZoCWgPQwgDQuvhy1VxQJSGlFKUaBVL92gWR0CszTPacqe9dX2UKGgGaAloD0MI51PHKqVNcUCUhpRSlGgVS9poFkdArM1Urf+CLHV9lChoBmgJaA9DCC7FVWVf5nFAlIaUUpRoFUvHaBZHQKzNdJFspG51fZQoaAZoCWgPQwjk84qn3iByQJSGlFKUaBVL3GgWR0CszahH9WIXdX2UKGgGaAloD0MI8ztNZnwVcUCUhpRSlGgVS/doFkdArM3y4OMER3V9lChoBmgJaA9DCKd1G9R+C2BAlIaUUpRoFU3oA2gWR0CszgYtg8bJdX2UKGgGaAloD0MIMXiY9k38cUCUhpRSlGgVS8RoFkdArM4vQnhKlHV9lChoBmgJaA9DCPUtc7qsdm9AlIaUUpRoFUvwaBZHQKzOQlMRHwx1fZQoaAZoCWgPQwg1XU90ne9xQJSGlFKUaBVL0GgWR0CszsXlCCz1dX2UKGgGaAloD0MI/WZiutA2cECUhpRSlGgVS9loFkdArM7PsNUfgnV9lChoBmgJaA9DCO5cGOkFk3JAlIaUUpRoFUvXaBZHQKzO4t5le4V1fZQoaAZoCWgPQwi9NbBVghdKQJSGlFKUaBVLnmgWR0Cszv/1xsEadX2UKGgGaAloD0MIFymUhe8KdECUhpRSlGgVS9FoFkdArM8sbJfYz3V9lChoBmgJaA9DCAIR4sqZjHBAlIaUUpRoFUvQaBZHQKzPMOjIq9Z1fZQoaAZoCWgPQwj0NGCQtJlzQJSGlFKUaBVNAAFoFkdArM/rftQbdnV9lChoBmgJaA9DCOXuc3y0dHNAlIaUUpRoFUvjaBZHQKzP+N83Mpx1fZQoaAZoCWgPQwg5tMh2/qVxQJSGlFKUaBVL8GgWR0Cs0AE7fYSQdX2UKGgGaAloD0MIqpuLv21tcUCUhpRSlGgVS+doFkdArNAj+Haew3V9lChoBmgJaA9DCE563/ga43FAlIaUUpRoFUvqaBZHQKzQWkFfReF1fZQoaAZoCWgPQwgS3EjZIg5yQJSGlFKUaBVL92gWR0Cs0MyYoiLVdX2UKGgGaAloD0MITTCca5gFcECUhpRSlGgVS99oFkdArNDVvybx3HV9lChoBmgJaA9DCFd8Q+FzrHFAlIaUUpRoFU0HAWgWR0Cs0RM23rledX2UKGgGaAloD0MI6gYKvNNCckCUhpRSlGgVS8ZoFkdArNEaH6/IsHV9lChoBmgJaA9DCPvqqkDtmHFAlIaUUpRoFUvMaBZHQKzRRFTefqZ1fZQoaAZoCWgPQwgMVwdAHHByQJSGlFKUaBVNCwFoFkdArNFOVE/jbXV9lChoBmgJaA9DCMuGNZWFn3FAlIaUUpRoFUvIaBZHQKzRXATIvJ11fZQoaAZoCWgPQwjM07milBpzQJSGlFKUaBVL7WgWR0Cs0Yy/bj95dX2UKGgGaAloD0MI+5P43AkjcUCUhpRSlGgVS9BoFkdArNGkrVe8f3V9lChoBmgJaA9DCNxoAG+BsnJAlIaUUpRoFUvTaBZHQKzRsYtQKrt1fZQoaAZoCWgPQwhTrvAul8dvQJSGlFKUaBVL4GgWR0Cs0pXvphWpdX2UKGgGaAloD0MIgv+tZEcQcECUhpRSlGgVS9VoFkdArNKhssQNC3V9lChoBmgJaA9DCFTGv894xHJAlIaUUpRoFUvjaBZHQKzSqHzpX6t1fZQoaAZoCWgPQwh6HAbzlxpxQJSGlFKUaBVL8mgWR0Cs0r/dqL0jdX2UKGgGaAloD0MIr7FLVO/4b0CUhpRSlGgVS91oFkdArNLwqTbFj3V9lChoBmgJaA9DCL5Nf/bjcXBAlIaUUpRoFUvaaBZHQKzTWA2AG0N1fZQoaAZoCWgPQwj59q5B30xwQJSGlFKUaBVL0mgWR0Cs04FRpDeCdX2UKGgGaAloD0MIWkqWk1A3b0CUhpRSlGgVS9JoFkdArNOHrKNhmXV9lChoBmgJaA9DCFRTknX4CHNAlIaUUpRoFUv5aBZHQKzTuvrWy1N1fZQoaAZoCWgPQwjsa11qBDxxQJSGlFKUaBVLxGgWR0Cs08dQO4G2dX2UKGgGaAloD0MIfnGpSpt/c0CUhpRSlGgVS+xoFkdArNP3X5FgD3V9lChoBmgJaA9DCGE3bFtUj3JAlIaUUpRoFUv4aBZHQKzUIgCfYjB1fZQoaAZoCWgPQwiaCYZzDaByQJSGlFKUaBVL/WgWR0Cs1DwyIpH7dX2UKGgGaAloD0MIz4dnCfKQckCUhpRSlGgVS/RoFkdArNRnJiiItXV9lChoBmgJaA9DCJCg+DFmE3NAlIaUUpRoFUv/aBZHQKzUl72L5yl1fZQoaAZoCWgPQwjzOXe73sRnQJSGlFKUaBVN6ANoFkdArNSejsUqQXV9lChoBmgJaA9DCIAqbtxiEXFAlIaUUpRoFUvOaBZHQKzVAM5OrQx1fZQoaAZoCWgPQwjkLy3qEzlyQJSGlFKUaBVL2GgWR0Cs1RcmKIi1dX2UKGgGaAloD0MIeT4D6g01cECUhpRSlGgVS9BoFkdArNUclzEJjXV9lChoBmgJaA9DCE/LD1wle3JAlIaUUpRoFUvaaBZHQKzVZj2Bas91fZQoaAZoCWgPQwhselBQioBzQJSGlFKUaBVNAQFoFkdArNV64vvjO3V9lChoBmgJaA9DCEYnS603znFAlIaUUpRoFUvcaBZHQKzV7o4dZJV1fZQoaAZoCWgPQwgRyCWOPCJxQJSGlFKUaBVL32gWR0Cs1f3+uNgjdX2UKGgGaAloD0MID2Q9tXrabUCUhpRSlGgVS9hoFkdArNYcyckMTnV9lChoBmgJaA9DCIJWYMiqunNAlIaUUpRoFUv8aBZHQKzWI4ACGN91fZQoaAZoCWgPQwizzvi+OOFxQJSGlFKUaBVL32gWR0Cs1mZeRgZ1dX2UKGgGaAloD0MI/+xHikgic0CUhpRSlGgVTQsBaBZHQKzWukrwvxp1fZQoaAZoCWgPQwiTAgtgitdxQJSGlFKUaBVL7mgWR0Cs1sMGHHmzdX2UKGgGaAloD0MIKeyi6IEcckCUhpRSlGgVS9VoFkdArNbBTyauwHV9lChoBmgJaA9DCNVcbjDUam5AlIaUUpRoFUv1aBZHQKzW7yauwHJ1fZQoaAZoCWgPQwirs1pgD/NwQJSGlFKUaBVL7GgWR0Cs1zXCKrJbdX2UKGgGaAloD0MIPKHXn8Tyb0CUhpRSlGgVS/FoFkdArNc+sV+I/XV9lChoBmgJaA9DCGWJzjILM29AlIaUUpRoFUvtaBZHQKzXoHARChN1fZQoaAZoCWgPQwgcmUf+YKNxQJSGlFKUaBVL8mgWR0Cs18t+9alldX2UKGgGaAloD0MIKEcBouD0bkCUhpRSlGgVS9hoFkdArNfQDNhVl3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 400, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:235737cb91f4238a643632e5436fc36e3539ea40b0a3c1b4cc1418014c6d5353
3
- size 144143
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ce68ade7ae4f621db11e14d5af527faedd32e4a8496d82ef3a9c7eec1aa94dcd
3
+ size 144100
ppo-LunarLander-v2/data CHANGED
@@ -47,7 +47,7 @@
47
  "_num_timesteps_at_start": 0,
48
  "seed": null,
49
  "action_noise": null,
50
- "start_time": 1653330206.230453,
51
  "learning_rate": 0.0003,
52
  "tensorboard_log": null,
53
  "lr_schedule": {
@@ -56,7 +56,7 @@
56
  },
57
  "_last_obs": {
58
  ":type:": "<class 'numpy.ndarray'>",
59
- ":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAgGiTPQkwMz/OSkc9w/PLvuO9rT19ISK6AAAAAAAAAADm+4I+Tx1GPvpVk75XuYm+d+jouwbrzr0AAAAAAAAAAGZVyL24Nsq7rwmUPBPfgTz7RSi9joVcPQAAgD8AAAAAAFevPGmpA7yBn0K+EYyEPEiKbj24a169AACAPwAAgD/+QYy+2lMgvfQqJrzX2QE60qeSPqpPETwAAIA/AACAP9PASr78c0g/iISvvbl0xb6ECT6+FegaPgAAAAAAAAAAgCSqPTuz6D2DOc+8FUGXvjsRlD2ivBi9AAAAAAAAAAAzkki9XPteukucSLqy46s1C6kDuq5ZaDkAAIA/AACAPwA42jtx7R+7isIrvOoOmjwF+De8F4CEPQAAgD8AAIA/xtNUPodrvj7MsZ6+R4KCvvNzEj6ysei9AAAAAAAAAACtFw8+ZUWQPriDWL4EHJy+yqSEPZJTIL4AAAAAAAAAAAaNUj5zLvo+Up1DvtK8sL7JWek9GzROvQAAAAAAAAAAMxLMvGyE+rvVE+Y7Dk+XPCSyQ704H309AACAPwAAgD9msva80tLfPJ8oQD7d82++JYNDPUgMRrwAAAAAAAAAAJq4gr3Pv0a8UghvPtQWsr3zKmu9EqGSvgAAgD8AAIA/GrsHPQm7ED56vFC+FD+BvqHVu72WGeI4AAAAAAAAAACUdJRiLg=="
60
  },
61
  "_last_episode_starts": {
62
  ":type:": "<class 'numpy.ndarray'>",
@@ -69,13 +69,13 @@
69
  "_current_progress_remaining": -0.015808000000000044,
70
  "ep_info_buffer": {
71
  ":type:": "<class 'collections.deque'>",
72
- ":serialized:": "gASVRhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI4iNiSqQUckCUhpRSlIwBbJRNAAGMAXSUR0CiSS9qk/KRdX2UKGgGaAloD0MIy7kUV9WVcUCUhpRSlGgVS9FoFkdAokk1OTJQtXV9lChoBmgJaA9DCAUx0LXv1nJAlIaUUpRoFUvpaBZHQKJJSDnNgSh1fZQoaAZoCWgPQwg3UUtz61dzQJSGlFKUaBVL4mgWR0CiSWgTqSowdX2UKGgGaAloD0MIf2ySH3Hsc0CUhpRSlGgVTQIBaBZHQKJJpMeOn2t1fZQoaAZoCWgPQwjsMCb9/fdxQJSGlFKUaBVNCQFoFkdAokmiya/h2nV9lChoBmgJaA9DCD8Cf/i503FAlIaUUpRoFU0FAWgWR0CiSen0se4kdX2UKGgGaAloD0MI2C5tOKyUb0CUhpRSlGgVS/JoFkdAokoYOUdJa3V9lChoBmgJaA9DCG7A54cRk3JAlIaUUpRoFU0IAWgWR0CiSkPfj0cwdX2UKGgGaAloD0MIa4MT0a8sc0CUhpRSlGgVTQ0BaBZHQKJKvCJGe+V1fZQoaAZoCWgPQwh/+WTFsFRyQJSGlFKUaBVL22gWR0CiStxIjGDMdX2UKGgGaAloD0MIpfeNr71QckCUhpRSlGgVS+ZoFkdAoksIp6QeWHV9lChoBmgJaA9DCHeE04JXcnFAlIaUUpRoFU08AWgWR0CiS3S8BdUsdX2UKGgGaAloD0MI4j0HliPEUECUhpRSlGgVS85oFkdAokujWTX8O3V9lChoBmgJaA9DCIl6wae5a3BAlIaUUpRoFUveaBZHQKJL2xyGSIR1fZQoaAZoCWgPQwib54h8FyJzQJSGlFKUaBVNDgFoFkdAokv//cWTHXV9lChoBmgJaA9DCEfjUL/LmXFAlIaUUpRoFUv3aBZHQKJMPTuOS4h1fZQoaAZoCWgPQwhlOJ7PwK1xQJSGlFKUaBVL2GgWR0CiTIpF9a2XdX2UKGgGaAloD0MIdJfEWRG9cUCUhpRSlGgVS/ZoFkdAokyfhOxja3V9lChoBmgJaA9DCPjfSnZsaHJAlIaUUpRoFUvfaBZHQKJNC52hZhd1fZQoaAZoCWgPQwgIza57Kz9vQJSGlFKUaBVL7mgWR0CiTQwA2hqTdX2UKGgGaAloD0MIa4Ko+4Afc0CUhpRSlGgVTfICaBZHQKJNEvkBCD51fZQoaAZoCWgPQwjACBoziS5wQJSGlFKUaBVNPgFoFkdAok1Q287IUHV9lChoBmgJaA9DCFD+7h31enFAlIaUUpRoFUvnaBZHQKJNpnh86WB1fZQoaAZoCWgPQwjaAGxAhOBvQJSGlFKUaBVL5GgWR0CiTbrnTy8SdX2UKGgGaAloD0MINQcI5miCbkCUhpRSlGgVS91oFkdAok5A2OyVwHV9lChoBmgJaA9DCKhxb35Dvm9AlIaUUpRoFU0IAWgWR0CiTl0ZNwirdX2UKGgGaAloD0MI+N10y45acUCUhpRSlGgVS+BoFkdAok56hFmWdHV9lChoBmgJaA9DCG8O12qP+nFAlIaUUpRoFUvqaBZHQKJPQELYwqR1fZQoaAZoCWgPQwgDsAERYrlwQJSGlFKUaBVNAQFoFkdAok9NQfp2U3V9lChoBmgJaA9DCFysqME043BAlIaUUpRoFUvbaBZHQKJPW/TLGJh1fZQoaAZoCWgPQwiNfF7xlEJwQJSGlFKUaBVNFwFoFkdAok9w0sOG03V9lChoBmgJaA9DCEKZRpML2m1AlIaUUpRoFU3oAWgWR0CiT7zYNAkcdX2UKGgGaAloD0MIgzP4+wUacECUhpRSlGgVS+RoFkdAolA04T9KmXV9lChoBmgJaA9DCLCRJAjXcHBAlIaUUpRoFUv9aBZHQKJQRXdTHbR1fZQoaAZoCWgPQwjknxnEx4xyQJSGlFKUaBVNDQFoFkdAolCDcoH9nHV9lChoBmgJaA9DCIZ1493R3HFAlIaUUpRoFUvoaBZHQKJQowevIOp1fZQoaAZoCWgPQwgziXrBZyFyQJSGlFKUaBVNAQFoFkdAolENfTkQw3V9lChoBmgJaA9DCN9rCI5LmnNAlIaUUpRoFU08AWgWR0CiUR1aGHpKdX2UKGgGaAloD0MIG2g+526PbUCUhpRSlGgVS+loFkdAolFK0fHPvHV9lChoBmgJaA9DCIup9BPORnJAlIaUUpRoFU0NAWgWR0CiWsPF3pwCdX2UKGgGaAloD0MI2+BE9Cu4ckCUhpRSlGgVTS4BaBZHQKJbYA0bcXZ1fZQoaAZoCWgPQwit+8dCdG1zQJSGlFKUaBVL/mgWR0CiW5cyWRigdX2UKGgGaAloD0MIBcWPMbdFc0CUhpRSlGgVTQoBaBZHQKJbtsUqQRx1fZQoaAZoCWgPQwgYRKSmXe9uQJSGlFKUaBVL/GgWR0CiW7cwYcebdX2UKGgGaAloD0MIvmvQlx5pcUCUhpRSlGgVTRQBaBZHQKJb8kGiYb91fZQoaAZoCWgPQwiQSrGjcWVwQJSGlFKUaBVNAQFoFkdAolwTh73PA3V9lChoBmgJaA9DCLQ8D+7ONHFAlIaUUpRoFUvtaBZHQKJcWe8PFvR1fZQoaAZoCWgPQwhP5h99E8RgQJSGlFKUaBVN6ANoFkdAolxdNWU8m3V9lChoBmgJaA9DCEBLV7AN7m1AlIaUUpRoFUv1aBZHQKJcZARChOB1fZQoaAZoCWgPQwi8AzxpIRxzQJSGlFKUaBVL+WgWR0CiXK5jx0+1dX2UKGgGaAloD0MIM4y7QTQAdECUhpRSlGgVS9xoFkdAolza+36RAHV9lChoBmgJaA9DCED5u3dUgHJAlIaUUpRoFU0OAWgWR0CiXQQosqaxdX2UKGgGaAloD0MINNk/T8Mtc0CUhpRSlGgVS/toFkdAol0mh/RVqHV9lChoBmgJaA9DCAx1WOHWYnJAlIaUUpRoFUv6aBZHQKJdV7LMcIZ1fZQoaAZoCWgPQwh7M2q+Sh5yQJSGlFKUaBVL42gWR0CiXZedbxEwdX2UKGgGaAloD0MIXU4JiMmebUCUhpRSlGgVS+toFkdAol45nvlU63V9lChoBmgJaA9DCEPIef/fgnFAlIaUUpRoFUviaBZHQKJeTNlAeJZ1fZQoaAZoCWgPQwgD7KNTV1RwQJSGlFKUaBVL7mgWR0CiXo/OlfqpdX2UKGgGaAloD0MIuVM6WP9AbkCUhpRSlGgVS9RoFkdAol6ZT4tYjnV9lChoBmgJaA9DCEax3NLqxnBAlIaUUpRoFU0GAWgWR0CiXt+jmCAddX2UKGgGaAloD0MIB33p7Q/YckCUhpRSlGgVS+FoFkdAol8PP5YYBXV9lChoBmgJaA9DCLVRnQ5kLHNAlIaUUpRoFUvzaBZHQKJfR349HMF1fZQoaAZoCWgPQwhIUz2ZPx9yQJSGlFKUaBVL22gWR0CiX1uf29L6dX2UKGgGaAloD0MIWYl5VlJJc0CUhpRSlGgVTQQBaBZHQKJfjurp7kZ1fZQoaAZoCWgPQwhM/5JUpixvQJSGlFKUaBVL5GgWR0CiX7HcUM5PdX2UKGgGaAloD0MIswxxrAs6cUCUhpRSlGgVS+FoFkdAol/84tHx0HV9lChoBmgJaA9DCAGKkSVz8XBAlIaUUpRoFUv9aBZHQKJgLdld1Md1fZQoaAZoCWgPQwiUMqmhzflxQJSGlFKUaBVNZAFoFkdAomBLi++M63V9lChoBmgJaA9DCB+8dmkD0HJAlIaUUpRoFUvhaBZHQKJgccEvCdl1fZQoaAZoCWgPQwgSoKaW7RVxQJSGlFKUaBVNQwFoFkdAomFztE5QxnV9lChoBmgJaA9DCP7XuWkzLnFAlIaUUpRoFU0AAWgWR0CiYYqO1fE5dX2UKGgGaAloD0MIwk6xalA6cUCUhpRSlGgVS+1oFkdAomGr0rbxmXV9lChoBmgJaA9DCKDDfHlBM3JAlIaUUpRoFU0MAWgWR0CiYce3Ytg8dX2UKGgGaAloD0MIPpY+dIG9cUCUhpRSlGgVS9doFkdAomIrsyBTXXV9lChoBmgJaA9DCJRrCmQ2RnJAlIaUUpRoFUvPaBZHQKJiQcXm/351fZQoaAZoCWgPQwgKE0azco1xQJSGlFKUaBVNBwFoFkdAomJPtF8XvnV9lChoBmgJaA9DCA1yF2GKHXFAlIaUUpRoFUv6aBZHQKJiVld1Mdt1fZQoaAZoCWgPQwjOcAM+P6ZjQJSGlFKUaBVN6ANoFkdAomJczoEB83V9lChoBmgJaA9DCDc0ZaefnHJAlIaUUpRoFU00AWgWR0CiYo4eT3ZgdX2UKGgGaAloD0MI0O/7Ny/5cECUhpRSlGgVTQIBaBZHQKJin07r9l51fZQoaAZoCWgPQwiTyamdYVFxQJSGlFKUaBVL9WgWR0CiYsr8R+SbdX2UKGgGaAloD0MIuOo6VJOhckCUhpRSlGgVS99oFkdAomLNm16VuHV9lChoBmgJaA9DCI3PZP+8wW9AlIaUUpRoFUvuaBZHQKJjOhGpdbB1fZQoaAZoCWgPQwhaZaa0vjNwQJSGlFKUaBVNEAFoFkdAomN91B+nZXV9lChoBmgJaA9DCAuallhZ8nJAlIaUUpRoFUvzaBZHQKJkYg9vCMx1fZQoaAZoCWgPQwg5tMh2Ph9uQJSGlFKUaBVL+WgWR0CiZIsp5NXYdX2UKGgGaAloD0MIsVBrmncqb0CUhpRSlGgVS9xoFkdAomTMNOM2nHV9lChoBmgJaA9DCP63kh3b/HJAlIaUUpRoFU1hAWgWR0CiZOIePq9odX2UKGgGaAloD0MIBcQkXEjPcUCUhpRSlGgVS+FoFkdAomT52OhkAnV9lChoBmgJaA9DCOTcJtzrbHBAlIaUUpRoFUvoaBZHQKJlIsH0K7Z1fZQoaAZoCWgPQwgWwmosoVlzQJSGlFKUaBVL72gWR0CiZULXtjTbdX2UKGgGaAloD0MI1LX2PlU8cUCUhpRSlGgVS+NoFkdAomVe0w8GLXV9lChoBmgJaA9DCG0dHOwNmHBAlIaUUpRoFU0wAWgWR0CiZZ4yfthNdX2UKGgGaAloD0MIrOKNzONeckCUhpRSlGgVTSgBaBZHQKJmF7tRekZ1fZQoaAZoCWgPQwhKXwg5L59wQJSGlFKUaBVNEwFoFkdAomYdzQu27XV9lChoBmgJaA9DCIRkARP4cXFAlIaUUpRoFUvgaBZHQKJmPOwgTyt1fZQoaAZoCWgPQwjyCG6kLLFyQJSGlFKUaBVNDwFoFkdAomZO1KGtZHV9lChoBmgJaA9DCBNiLqnamXBAlIaUUpRoFUvmaBZHQKJmmAYpDu11fZQoaAZoCWgPQwhD44kgDtBwQJSGlFKUaBVNNwFoFkdAombFlK9PDnVlLg=="
73
  },
74
  "ep_success_buffer": {
75
  ":type:": "<class 'collections.deque'>",
76
  ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
  },
78
- "_n_updates": 276,
79
  "n_steps": 1024,
80
  "gamma": 0.999,
81
  "gae_lambda": 0.98,
 
47
  "_num_timesteps_at_start": 0,
48
  "seed": null,
49
  "action_noise": null,
50
+ "start_time": 1653331639.6553693,
51
  "learning_rate": 0.0003,
52
  "tensorboard_log": null,
53
  "lr_schedule": {
 
56
  },
57
  "_last_obs": {
58
  ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAo2CTvjaalT/DRYm+254Av5hn4767XbQ9AAAAAAAAAADNvZy8OC7Fu8wbD73GAfS9iW0jvc68zL4AAIA/AACAPxrfZT0pmFG6COVOOBf2mLNuAYi7Zv9ttwAAAAAAAIA/zS0BPQgStD/bVx0/NSq3vSO4krzPRAc8AAAAAAAAAABNWUc9u+qHvIXt27xcea282WfbvZ4nHL4AAIA/AACAPwAr1by852U91POQPT+wo75wkWo9WoqfugAAAAAAAAAAk+E1vuizND9S4aw+t/TivpIUrrw1tW0+AAAAAAAAAAAzmVw8BA2xP0C54T7+q9++kdMPvBrhZ7wAAAAAAAAAADPw4Dyu9Za6EiiCti+MWbHBy/u5RuOWNQAAgD8AAIA/zR6LvcE42j4+pws+Af7SvnSy9jsmXCg9AAAAAAAAAADm1hI9XFRrPXOfqL15Goy+1Iz5PHUBe70AAAAAAAAAAM2TkTyinck+WfkDPl0Yxb5XC7I9U9xMPAAAAAAAAAAAmkdgvKIFmT9dLEq9QeAFvxO9i71Yamq9AAAAAAAAAAANVfq9mrTbPp131T5mk92+VnsePlWtzj0AAAAAAAAAACZ2DL4CHUk/DMsCPreP8b6FZPy9ANLwPQAAAAAAAAAA+DKDvpAVoj9n2aO+r9bxvp1M5b5KVte8AAAAAAAAAACUdJRiLg=="
60
  },
61
  "_last_episode_starts": {
62
  ":type:": "<class 'numpy.ndarray'>",
 
69
  "_current_progress_remaining": -0.015808000000000044,
70
  "ep_info_buffer": {
71
  ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gASVJRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIfCqnPSWPcECUhpRSlIwBbJRL6owBdJRHQKy9zSv1UVB1fZQoaAZoCWgPQwhMiSR6WZZzQJSGlFKUaBVL1GgWR0Csvc1nmJWOdX2UKGgGaAloD0MIYvVHGAZBc0CUhpRSlGgVTRUBaBZHQKy+KvW6K+B1fZQoaAZoCWgPQwjtD5TbdkNyQJSGlFKUaBVL+GgWR0CsvjGwA2hqdX2UKGgGaAloD0MIvXDnwogQckCUhpRSlGgVS8doFkdArL5mBQN1AHV9lChoBmgJaA9DCJih8UQQfXBAlIaUUpRoFUvfaBZHQKy+i7HyVfN1fZQoaAZoCWgPQwjmz7cFC6BwQJSGlFKUaBVLyGgWR0CsvqzYVZcLdX2UKGgGaAloD0MIoBUYsvr3c0CUhpRSlGgVS+NoFkdArL7KB7NSqHV9lChoBmgJaA9DCD9UGjHzwHBAlIaUUpRoFUvlaBZHQKy+3Ijnmq51fZQoaAZoCWgPQwhLOsrBLHdzQJSGlFKUaBVL42gWR0CsvzDoyKvWdX2UKGgGaAloD0MI9IdmnpymcECUhpRSlGgVS8loFkdArL9WQXAM2HV9lChoBmgJaA9DCHY3T3WI0HJAlIaUUpRoFUvbaBZHQKy/Wb961LJ1fZQoaAZoCWgPQwh+x/DYTyNyQJSGlFKUaBVL/GgWR0Csv4N+so2GdX2UKGgGaAloD0MI66f/rLnPckCUhpRSlGgVS/doFkdArL+t/H5rQHV9lChoBmgJaA9DCOZXc4DgDHFAlIaUUpRoFUvZaBZHQKy/4d92HL11fZQoaAZoCWgPQwh7vJAODw1zQJSGlFKUaBVLz2gWR0CswC5GjKxLdX2UKGgGaAloD0MIECOER1vVc0CUhpRSlGgVS8hoFkdArMB1eBxxUHV9lChoBmgJaA9DCOvgYG+iV3NAlIaUUpRoFUvqaBZHQKzAg3l0YCR1fZQoaAZoCWgPQwh/pIgMa2xzQJSGlFKUaBVL32gWR0CswLkOqebvdX2UKGgGaAloD0MIS80eaMXUcUCUhpRSlGgVS9BoFkdArMDJwKjSHHV9lChoBmgJaA9DCH6QZcHEdHFAlIaUUpRoFUvLaBZHQKzA4NqgyuZ1fZQoaAZoCWgPQwh+xoUDoZ5wQJSGlFKUaBVLz2gWR0CswQ2qT8pDdX2UKGgGaAloD0MIpFUt6aiAckCUhpRSlGgVS85oFkdArMEn2GqPwXV9lChoBmgJaA9DCAspP6k2snBAlIaUUpRoFUvmaBZHQKzBiREnb7F1fZQoaAZoCWgPQwiZ1xGH7D1xQJSGlFKUaBVLz2gWR0Cswcuf/WDpdX2UKGgGaAloD0MIvceZJqzucECUhpRSlGgVS8RoFkdArMHaBshxHXV9lChoBmgJaA9DCIjyBS3kv3FAlIaUUpRoFUvmaBZHQKzB5v2GqPx1fZQoaAZoCWgPQwgJ/OHn/0VzQJSGlFKUaBVL8mgWR0CswjEKE385dX2UKGgGaAloD0MI7rQ1IhiZckCUhpRSlGgVS+VoFkdArMKo75mAb3V9lChoBmgJaA9DCL01sFVCKXBAlIaUUpRoFUvQaBZHQKzMGEwFkhB1fZQoaAZoCWgPQwiV8e8z7s9xQJSGlFKUaBVL2mgWR0CszCxLbpNcdX2UKGgGaAloD0MIGF+0x0tccUCUhpRSlGgVS/RoFkdArMw2CCjDbnV9lChoBmgJaA9DCN+/eXEiNnNAlIaUUpRoFUvpaBZHQKzMp238XN11fZQoaAZoCWgPQwgFGJY/X3xxQJSGlFKUaBVL32gWR0CszLEAo5PudX2UKGgGaAloD0MIoFBPH8Fkc0CUhpRSlGgVS/doFkdArMzl1W8yvnV9lChoBmgJaA9DCCRfCaREt3FAlIaUUpRoFUvnaBZHQKzNHOGj9GZ1fZQoaAZoCWgPQwgDQuvhy1VxQJSGlFKUaBVL92gWR0CszTPacqe9dX2UKGgGaAloD0MI51PHKqVNcUCUhpRSlGgVS9poFkdArM1Urf+CLHV9lChoBmgJaA9DCC7FVWVf5nFAlIaUUpRoFUvHaBZHQKzNdJFspG51fZQoaAZoCWgPQwjk84qn3iByQJSGlFKUaBVL3GgWR0CszahH9WIXdX2UKGgGaAloD0MI8ztNZnwVcUCUhpRSlGgVS/doFkdArM3y4OMER3V9lChoBmgJaA9DCKd1G9R+C2BAlIaUUpRoFU3oA2gWR0CszgYtg8bJdX2UKGgGaAloD0MIMXiY9k38cUCUhpRSlGgVS8RoFkdArM4vQnhKlHV9lChoBmgJaA9DCPUtc7qsdm9AlIaUUpRoFUvwaBZHQKzOQlMRHwx1fZQoaAZoCWgPQwg1XU90ne9xQJSGlFKUaBVL0GgWR0CszsXlCCz1dX2UKGgGaAloD0MI/WZiutA2cECUhpRSlGgVS9loFkdArM7PsNUfgnV9lChoBmgJaA9DCO5cGOkFk3JAlIaUUpRoFUvXaBZHQKzO4t5le4V1fZQoaAZoCWgPQwi9NbBVghdKQJSGlFKUaBVLnmgWR0Cszv/1xsEadX2UKGgGaAloD0MIFymUhe8KdECUhpRSlGgVS9FoFkdArM8sbJfYz3V9lChoBmgJaA9DCAIR4sqZjHBAlIaUUpRoFUvQaBZHQKzPMOjIq9Z1fZQoaAZoCWgPQwj0NGCQtJlzQJSGlFKUaBVNAAFoFkdArM/rftQbdnV9lChoBmgJaA9DCOXuc3y0dHNAlIaUUpRoFUvjaBZHQKzP+N83Mpx1fZQoaAZoCWgPQwg5tMh2/qVxQJSGlFKUaBVL8GgWR0Cs0AE7fYSQdX2UKGgGaAloD0MIqpuLv21tcUCUhpRSlGgVS+doFkdArNAj+Haew3V9lChoBmgJaA9DCE563/ga43FAlIaUUpRoFUvqaBZHQKzQWkFfReF1fZQoaAZoCWgPQwgS3EjZIg5yQJSGlFKUaBVL92gWR0Cs0MyYoiLVdX2UKGgGaAloD0MITTCca5gFcECUhpRSlGgVS99oFkdArNDVvybx3HV9lChoBmgJaA9DCFd8Q+FzrHFAlIaUUpRoFU0HAWgWR0Cs0RM23rledX2UKGgGaAloD0MI6gYKvNNCckCUhpRSlGgVS8ZoFkdArNEaH6/IsHV9lChoBmgJaA9DCPvqqkDtmHFAlIaUUpRoFUvMaBZHQKzRRFTefqZ1fZQoaAZoCWgPQwgMVwdAHHByQJSGlFKUaBVNCwFoFkdArNFOVE/jbXV9lChoBmgJaA9DCMuGNZWFn3FAlIaUUpRoFUvIaBZHQKzRXATIvJ11fZQoaAZoCWgPQwjM07milBpzQJSGlFKUaBVL7WgWR0Cs0Yy/bj95dX2UKGgGaAloD0MI+5P43AkjcUCUhpRSlGgVS9BoFkdArNGkrVe8f3V9lChoBmgJaA9DCNxoAG+BsnJAlIaUUpRoFUvTaBZHQKzRsYtQKrt1fZQoaAZoCWgPQwhTrvAul8dvQJSGlFKUaBVL4GgWR0Cs0pXvphWpdX2UKGgGaAloD0MIgv+tZEcQcECUhpRSlGgVS9VoFkdArNKhssQNC3V9lChoBmgJaA9DCFTGv894xHJAlIaUUpRoFUvjaBZHQKzSqHzpX6t1fZQoaAZoCWgPQwh6HAbzlxpxQJSGlFKUaBVL8mgWR0Cs0r/dqL0jdX2UKGgGaAloD0MIr7FLVO/4b0CUhpRSlGgVS91oFkdArNLwqTbFj3V9lChoBmgJaA9DCL5Nf/bjcXBAlIaUUpRoFUvaaBZHQKzTWA2AG0N1fZQoaAZoCWgPQwj59q5B30xwQJSGlFKUaBVL0mgWR0Cs04FRpDeCdX2UKGgGaAloD0MIWkqWk1A3b0CUhpRSlGgVS9JoFkdArNOHrKNhmXV9lChoBmgJaA9DCFRTknX4CHNAlIaUUpRoFUv5aBZHQKzTuvrWy1N1fZQoaAZoCWgPQwjsa11qBDxxQJSGlFKUaBVLxGgWR0Cs08dQO4G2dX2UKGgGaAloD0MIfnGpSpt/c0CUhpRSlGgVS+xoFkdArNP3X5FgD3V9lChoBmgJaA9DCGE3bFtUj3JAlIaUUpRoFUv4aBZHQKzUIgCfYjB1fZQoaAZoCWgPQwiaCYZzDaByQJSGlFKUaBVL/WgWR0Cs1DwyIpH7dX2UKGgGaAloD0MIz4dnCfKQckCUhpRSlGgVS/RoFkdArNRnJiiItXV9lChoBmgJaA9DCJCg+DFmE3NAlIaUUpRoFUv/aBZHQKzUl72L5yl1fZQoaAZoCWgPQwjzOXe73sRnQJSGlFKUaBVN6ANoFkdArNSejsUqQXV9lChoBmgJaA9DCIAqbtxiEXFAlIaUUpRoFUvOaBZHQKzVAM5OrQx1fZQoaAZoCWgPQwjkLy3qEzlyQJSGlFKUaBVL2GgWR0Cs1RcmKIi1dX2UKGgGaAloD0MIeT4D6g01cECUhpRSlGgVS9BoFkdArNUclzEJjXV9lChoBmgJaA9DCE/LD1wle3JAlIaUUpRoFUvaaBZHQKzVZj2Bas91fZQoaAZoCWgPQwhselBQioBzQJSGlFKUaBVNAQFoFkdArNV64vvjO3V9lChoBmgJaA9DCEYnS603znFAlIaUUpRoFUvcaBZHQKzV7o4dZJV1fZQoaAZoCWgPQwgRyCWOPCJxQJSGlFKUaBVL32gWR0Cs1f3+uNgjdX2UKGgGaAloD0MID2Q9tXrabUCUhpRSlGgVS9hoFkdArNYcyckMTnV9lChoBmgJaA9DCIJWYMiqunNAlIaUUpRoFUv8aBZHQKzWI4ACGN91fZQoaAZoCWgPQwizzvi+OOFxQJSGlFKUaBVL32gWR0Cs1mZeRgZ1dX2UKGgGaAloD0MI/+xHikgic0CUhpRSlGgVTQsBaBZHQKzWukrwvxp1fZQoaAZoCWgPQwiTAgtgitdxQJSGlFKUaBVL7mgWR0Cs1sMGHHmzdX2UKGgGaAloD0MIKeyi6IEcckCUhpRSlGgVS9VoFkdArNbBTyauwHV9lChoBmgJaA9DCNVcbjDUam5AlIaUUpRoFUv1aBZHQKzW7yauwHJ1fZQoaAZoCWgPQwirs1pgD/NwQJSGlFKUaBVL7GgWR0Cs1zXCKrJbdX2UKGgGaAloD0MIPKHXn8Tyb0CUhpRSlGgVS/FoFkdArNc+sV+I/XV9lChoBmgJaA9DCGWJzjILM29AlIaUUpRoFUvtaBZHQKzXoHARChN1fZQoaAZoCWgPQwgcmUf+YKNxQJSGlFKUaBVL8mgWR0Cs18t+9alldX2UKGgGaAloD0MIKEcBouD0bkCUhpRSlGgVS9hoFkdArNfQDNhVl3VlLg=="
73
  },
74
  "ep_success_buffer": {
75
  ":type:": "<class 'collections.deque'>",
76
  ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
  },
78
+ "_n_updates": 400,
79
  "n_steps": 1024,
80
  "gamma": 0.999,
81
  "gae_lambda": 0.98,
ppo-LunarLander-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:76554c1d15ceed8cf4b1c0a224c19b28d2eaf9f7904cc8303f3d7437aed18566
3
  size 84893
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:06d53802d5c7542878106fc711463a4e564ec2960aa02c7cf4fe0a62885cf8c4
3
  size 84893
ppo-LunarLander-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:58ed0cbb0b4be99a8836ab2c6d5d6310d921cf54df548d420a7463ce31f9a315
3
  size 43201
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:15fb5e7d9b0e84632bdad4de59e09dc1eca1ee121a731c5ed72a1613813f68a3
3
  size 43201
replay.mp4 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:4a1df46086fe3a03ea7ce4f38fdf20c14a78312587ae888250b724d95c707949
3
- size 200806
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ee47a0957c5ebeb6a896fdd8844200077a682a0427ba2d062bb207e1b3869783
3
+ size 199855
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 286.02535970851125, "std_reward": 20.881723736322524, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-23T18:31:30.877546"}
 
1
+ {"mean_reward": 265.144221029308, "std_reward": 22.35963380672593, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-23T18:53:09.217138"}