Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,112 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
datasets:
|
4 |
+
- hiyouga/glaive-function-calling-v2-sharegpt
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
library_name: transformers
|
8 |
+
tags:
|
9 |
+
- llama-factory
|
10 |
+
- unsloth
|
11 |
+
base_model: h2oai/h2o-danube2-1.8b-base
|
12 |
+
---
|
13 |
+
|
14 |
+
# h2o-danube2 with ChatML template
|
15 |
+
|
16 |
+
This is a [BAdam](https://arxiv.org/abs/2404.02827 "BAdam: A Memory Efficient Full Parameter Optimization Method for Large Language Models") and [LoRA+](https://arxiv.org/abs/2402.12354 "LoRA+: Efficient Low Rank Adaptation of Large Models") fine-tuned danube2 base model. It uses the ChatML template and was trained on the [glaive-function-calling-v2](https://huggingface.co/datasets/glaiveai/glaive-function-calling-v2) dataset from [GlaiveAI](https://huggingface.co/glaiveai) that has been converted to [ShareGPT](https://huggingface.co/datasets/hiyouga/glaive-function-calling-v2-sharegpt) by [hiyouga](https://huggingface.co/hiyouga) of [LLama-Factory](https://github.com/hiyouga/LLaMA-Factory) fame.
|
17 |
+
|
18 |
+
## Template
|
19 |
+
|
20 |
+
### ChatML
|
21 |
+
```jinja2
|
22 |
+
<|im_start>system
|
23 |
+
{{system}}
|
24 |
+
<tools>
|
25 |
+
{{json_format_tools}}
|
26 |
+
</tools>
|
27 |
+
<|im_end|>
|
28 |
+
<|im_start>user
|
29 |
+
{{instruction}}<|im_end|>
|
30 |
+
<|im_start>assistant
|
31 |
+
<tool_call>
|
32 |
+
{{tool_call}}
|
33 |
+
</tool_call><|im_end>
|
34 |
+
<|im_start>tool
|
35 |
+
<tool_response>
|
36 |
+
{{response}}
|
37 |
+
</tool_response><|im_end>
|
38 |
+
```
|
39 |
+
|
40 |
+
### LLama-Factory
|
41 |
+
```python
|
42 |
+
_register_template(
|
43 |
+
name="hermes_chatml",
|
44 |
+
format_user=StringFormatter(slots=["<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]),
|
45 |
+
format_assistant=StringFormatter(slots=["{{content}}<|im_end|>\n"]),
|
46 |
+
format_system=StringFormatter(slots=["<|im_start|>system\n{{content}}<|im_end|>\n"]),
|
47 |
+
format_function=FunctionFormatter(slots=["<tool_call>\n{\"name\":\"{{name}}\", \"arguments\":{{arguments}}}\n</tool_call><|im_end|>\n"]),
|
48 |
+
format_observation=StringFormatter(slots=["<|im_start|>tool\n<tool_response>\n{{content}}\n</tool_response><|im_end|>\n<|im_start|>assistant\n"]),
|
49 |
+
format_tools=ToolFormatter(tool_format="chatml"),
|
50 |
+
stop_words=["<|im_end|>"],
|
51 |
+
)
|
52 |
+
```
|
53 |
+
|
54 |
+
## BAdam config
|
55 |
+
|
56 |
+
```yaml
|
57 |
+
### model
|
58 |
+
model_name_or_path: danube2-base-chatml
|
59 |
+
|
60 |
+
### method
|
61 |
+
stage: sft
|
62 |
+
do_train: true
|
63 |
+
finetuning_type: full
|
64 |
+
use_badam: true
|
65 |
+
badam_switch_mode: ascending
|
66 |
+
badam_switch_interval: 50
|
67 |
+
badam_verbose: 1
|
68 |
+
badam_start_block: 5
|
69 |
+
seed: 404
|
70 |
+
|
71 |
+
### dataset
|
72 |
+
dataset: glaive_toolcall_100k
|
73 |
+
template: hermes_chatml
|
74 |
+
cutoff_len: 8192
|
75 |
+
overwrite_cache: false
|
76 |
+
preprocessing_num_workers: 12
|
77 |
+
|
78 |
+
### output
|
79 |
+
output_dir: glaive-tool-chatml-badam
|
80 |
+
logging_steps: 5
|
81 |
+
save_steps: 1
|
82 |
+
save_strategy: epoch
|
83 |
+
plot_loss: true
|
84 |
+
overwrite_output_dir: false
|
85 |
+
|
86 |
+
### train
|
87 |
+
per_device_train_batch_size: 2
|
88 |
+
gradient_accumulation_steps: 8
|
89 |
+
learning_rate: 0.000005
|
90 |
+
num_train_epochs: 1
|
91 |
+
lr_scheduler_type: cosine
|
92 |
+
warmup_ratio: 0.01
|
93 |
+
pure_bf16: true
|
94 |
+
flash_attn: fa2
|
95 |
+
|
96 |
+
### eval
|
97 |
+
val_size: 0.01
|
98 |
+
per_device_eval_batch_size: 1
|
99 |
+
eval_strategy: steps
|
100 |
+
eval_steps: 1000
|
101 |
+
```
|
102 |
+
|
103 |
+
### BAdam Training results
|
104 |
+
|
105 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
106 |
+
|:-------------:|:------:|:----:|:---------------:|
|
107 |
+
| 0.3914 | 0.1607 | 1000 | 0.2984 |
|
108 |
+
| 0.3256 | 0.3214 | 2000 | 0.2819 |
|
109 |
+
| 0.4131 | 0.4821 | 3000 | 0.2765 |
|
110 |
+
| 0.3922 | 0.6428 | 4000 | 0.2736 |
|
111 |
+
| 0.3528 | 0.8036 | 5000 | 0.2724 |
|
112 |
+
| 0.3477 | 0.9643 | 6000 | 0.2724 |
|